首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
2.
Tumor angiogenesis has been identified to play a critical role in tumor growth and tumor progression, and is regulated by a balance of angiogenic and anti-angiogenic cytokines. Among them VEGF (vascular endothelial growth factor) and its signaling through its receptors are of crucial relevance. Inhibition of VEGF signaling by monoclonal antibodies or small molecules (kinase inhibitors) has already been successfully established for the treatment of different cancer entities and multiple new drugs are being tested in clinical trials. However not all patients are likely to respond to these therapies, but to date there are no reliable biomarkers available to predict therapy response. Many studies integrated biomarker programs in their study protocols, thus several potential biomarkers have been identified which are currently under clinical investigation in prospective randomized studies. This review intends to give an overview of the described potential biomarkers as well as different imaging techniques such as ultrasound and magnetic resonance imaging that can indicate benefit, resistance and toxicity to anti-angiogenic therapies.  相似文献   

3.
Photodynamic therapy (PDT) can be a highly effective treatment for diseases ranging from actinic keratosis to cancer. While use of this therapy shows great promise in preclinical and clinical studies, understanding the molecular consequences of PDT is critical to designing better treatment protocols. A number of publications have documented alteration in angiogenic factors and growth factor receptors following PDT, which could abrogate treatment effect by inducing angiogenesis and reestablishment of the tumor vasculature. In response to these findings, work over the past decade has examined the efficacy of combining PDT with molecular targeting drugs, such as anti-angiogenic compounds, in an effort to combat these PDT-induced molecular changes. These combinatorial approaches increase rates of apoptosis, impair pro-tumorigenic signaling, and enhance tumor response. This report will examine the current understanding of PDT-induced angiogenic signaling and address molecular-based approaches to abrogate this signaling or its consequences thereby enhancing PDT efficacy.  相似文献   

4.
Retinopathy of prematurity (ROP) is an ocular vascular disease affecting premature infants, characterized by pathological retinal neovascularization (RNV), dilated and tortuous retinal blood vessels, and retinal or vitreous hemorrhages that may lead to retinal detachment, vision impairment and blindness. Compared with other neovascular diseases, ROP is unique because of ongoing and concurrent physiological and pathological angiogenesis in the developing retina. While the disease is currently treated by laser or cryotherapy, anti-vascular endothelial growth factor (VEGF) agents have been extensively investigated but are not approved in the U.S. because of safety concerns that they negatively interfere with physiological angiogenesis of the developing retina. An ideal therapeutic strategy would selectively inhibit pathological but not physiological angiogenesis. Our group recently described a novel strategy that selectively and safely alleviates pathological RNV in animal models of ROP by targeting secretogranin III (Scg3), a disease-restricted angiogenic factor. The preclinical profile of anti-Scg3 therapy presents a high potential for next-generation disease-targeted anti-angiogenic therapy for the ROP indication. This review focuses on retinal vessel development in neonates, the pathogenesis of ROP and its underlying molecular mechanisms, including different animal models, and provides a summary of current and emerging therapies.  相似文献   

5.
Although anti-angiogenic agents offer great therapeutic potential, preclinical and clinical studies suggest that these agents, used as monotherapies, have a delayed onset of activity and may have only limited effects on advanced malignancies. Multimodality targeted polymer therapeutics that include anti-angiogenic agents and chemotherapeutics offer the potential for improved efficacy and diminished toxicity in the treatment of cancer and other angiogenesis-dependent diseases. We have recently designed and characterized novel combined anti-angiogenic and antitumor polymer–drug conjugates that target both the tumor and its microenvironment. These conjugates include combined anti-angiogenic and chemotherapeutic drugs, such as TNP-470 and paclitaxel, respectively. Several conjugates also incorporate bisphosphonates as targeting moieties for bone metastases and osteosarcomas or RGD peptidomimetics that target integrins overexpressed on tumor endothelial cells and several tumor cells. Using molecular imaging techniques, we have successfully established dormant and fast-growing tumor mouse models to intravitally non-invasively follow-up tumor progression and response to novel polymer therapeutics. Our results point at our polymer therapeutics as novel bi-specific conjugates targeting both the tumor epithelial and endothelial compartments, warranting their use on a wide spectrum of primary as well as metastatic tumors. The use of these novel architectures will potentially shed light on the molecular mechanisms underlying tumor dormancy and hopefully transform cancer into a chronically-manageable disease.  相似文献   

6.
7.
Delta-like-ligand 4 (DLL4) is a promising target to augment the effects of VEGF inhibitors. A simultaneous blockade of VEGF/VEGFR and DLL4/Notch signaling pathways leads to more potent anti-cancer effects by synergistic anti-angiogenic mechanisms in xenograft models. A bispecific antibody targeting VEGF and DLL4 (ABL001/NOV1501/TR009) demonstrates more potent in vitro and in vivo biological activity compared to VEGF or DLL4 targeting monoclonal antibodies alone and is currently being evaluated in a phase 1 clinical study of heavy chemotherapy or targeted therapy pre-treated cancer patients (ClinicalTrials.gov Identifier: NCT03292783). However, the effects of a combination of ABL001 and chemotherapy on tumor vessels and tumors are not known. Hence, the effects of ABL001, with or without paclitaxel and irinotecan were evaluated in human gastric or colon cancer xenograft models. The combination treatment synergistically inhibited tumor progression compared to each monotherapy. More tumor vessel regression and apoptotic tumor cell induction were observed in tumors treated with the combination therapy, which might be due to tumor vessel normalization. Overall, these findings suggest that the combination therapy of ABL001 with paclitaxel or irinotecan would be a better clinical strategy for the treatment of cancer patients.  相似文献   

8.
Ovarian Cancer represents the most fatal type of gynecological malignancies. A number of processes are involved in the pathogenesis of ovarian cancer, especially within the tumor microenvironment. Angiogenesis represents a hallmark phenomenon in cancer, and it is responsible for tumor spread and metastasis in ovarian cancer, among other tumor types, as it leads to new blood vessel formation. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Growth factors have been identified to play key roles in driving angiogenesis and, thus, the formation of new blood vessels that assist in “feeding” cancer. Such molecules include the vascular endothelial growth factor (VEGF), the platelet derived growth factor (PDGF), the fibroblast growth factor (FGF), and the angiopoietin/Tie2 receptor complex. These proteins are key players in complex molecular pathways within the tumor cell and they have been in the spotlight of the development of anti-angiogenic molecules that may act as stand-alone therapeutics, or in concert with standard treatment regimes such as chemotherapy. The pathways involved in angiogenesis and molecules that have been developed in order to combat angiogenesis are described in this paper.  相似文献   

9.
During tumor growth, angiogenesis is required to ensure oxygen and nutrient transport to the tumor. Vascular endothelial growth factor (VEGF) is the major inducer of angiogenesis and appears to be a key modulator of the anti-tumor immune response. Indeed, VEGF modulates innate and adaptive immune responses through direct interactions and indirectly by modulating protein expressions on endothelial cells or vascular permeability. The inhibition of the VEGF signaling pathway is clinically approved for the treatment of several cancers. Therapies targeting VEGF can modulate the tumor vasculature and the immune response. In this review, we discuss the roles of VEGF in the anti-tumor immune response. In addition, we summarize therapeutic strategies based on its inhibition, and their clinical approval.  相似文献   

10.
Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.  相似文献   

11.
Angiogenesis is one of the hallmarks of cancer. Several studies have shown that vascular endothelium growth factor (VEGF) plays a leading role in angiogenesis progression. Antiangiogenic medication has gained substantial recognition and is commonly administered in many forms of human cancer, leading to a rising interest in cancer therapy. However, this treatment method can lead to a deteriorating outcome of resistance, invasion, distant metastasis, and overall survival relative to its cytotoxicity. Furthermore, there are significant obstacles in tracking the efficacy of antiangiogenic treatments by incorporating positive biomarkers into clinical settings. These shortcomings underline the essential need to identify additional angiogenic inhibitors that target numerous angiogenic factors or to develop a new method for drug delivery of current inhibitors. The great benefits of nanoparticles are their potential, based on their specific properties, to be effective mechanisms that concentrate on the biological system and control various important functions. Among various therapeutic approaches, nanotechnology has emerged as a new strategy for treating different cancer types. This article attempts to demonstrate the huge potential for targeted nanoparticles and their molecular imaging applications. Notably, several nanoparticles have been developed and engineered to demonstrate antiangiogenic features. This nanomedicine could effectively treat a number of cancers using antiangiogenic therapies as an alternative approach. We also discuss the latest antiangiogenic and nanotherapeutic strategies and highlight tumor vessels and their microenvironments.  相似文献   

12.
Angiogenesis, which plays a critical role during tumor development, is tightly regulated by the Sonic Hedgehog (SHH) pathway, which has been known to malfunction in many types of cancer. Therefore, inhibition of angiogenesis via modulation of the SHH signaling pathway has become very attractive for cancer chemotherapy. Scutellaria barbata D. Don (SB) has long been used in China to treat various cancers including colorectal cancer (CRC). Our published data suggested that the ethanol extract of SB (EESB) is able to induce apoptosis of colon cancer cells and inhibit angiogenesis in a chick embryo chorioallantoic membrane model. To further elucidate the precise mechanisms of its anti-tumor activity, in the present study we used a CRC mouse xenograft model to evaluate the effect of EESB on tumor growth and angiogenesis in vivo. Our current data indicated that EESB reduces tumor size without affecting on the body weight gain in CRC mice. In addition, EESB treatment suppresses the expression of key mediators of the SHH pathway in tumor tissues, which in turn resulted in the inhibition of tumor angiogenesis. Furthermore, EESB treatment inhibits the expression of vascular endothelial growth factor A (VEGF-A), an important target gene of SHH signaling and functioning as one of the strongest stimulators of angiogenesis. Our findings suggest that inhibition of tumor angiogenesis via suppression of the SHH pathway might be one of the mechanisms by which Scutellaria barbata D. Don can be effective in the treatment of cancers.  相似文献   

13.
The growth and vascularization of prostate cancer is dependent on interactions between cancer cells and supporting stromal cells. The primary stromal cell type found in prostate tumors is the carcinoma-associated fibroblast, which produces placental growth factor (PlGF). PlGF is a member of the vascular endothelial growth factor (VEGF) family of angiogenic molecules and PlGF mRNA levels increase after androgen deprivation therapy in prostate cancer. In this study, we show that PlGF has a direct dose-dependent proliferative effect on human PC-3 prostate cancer cells in vitro and fibroblast-derived PlGF increases PC-3 proliferation in co-culture. In xenograft tumor models, intratumoral administration of murine PlGF siRNA reduced stromal-derived PlGF expression, reduced tumor burden and decreased the number of Ki-67 positive proliferating cells associated with reduced vascular density. These data show that targeting stromal PlGF expression may represent a therapeutic target for the treatment of prostate cancer.  相似文献   

14.
Renal cell carcinoma (RCC) is a malignancy of the kidney originating from the tubular epithelium. Inactivation of the von Hippel–Lindau tumor-suppressor gene (VHL) is found in most clear cell renal cell carcinomas (ccRCCs). The VHL–HIF–VEGF/VEGFR pathway, which involves the von Hippel–Lindau tumor suppressor protein (VHL), hypoxia-inducible factor (HIF), vascular endothelial growth factor (VEGF), and its receptor (VEGFR), is a well-studied therapeutic target for metastatic ccRCC. Therefore, over the past decade, anti-angiogenic agents targeting VEGFR have served as the standard treatment for metastatic RCC. Recently, based on the immunomodulatory effect of anti-VEGFR therapy, anti-angiogenic agents and immune checkpoint inhibitor combination strategies have also emerged as therapeutic strategies. These advances were made possible by the improved understanding of the VHL–HIF pathway. In this review, we summarize the historical evolution of ccRCC treatments, with a focus on the involvement of the VHL–HIF pathway.  相似文献   

15.
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor’s resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.  相似文献   

16.
Tumor metastasis is the main cause of lethality of prostate cancer, because conventional therapies like surgery and hormone treatment rarely work at this stage. Tumor cell migration, invasion and adhesion are necessary processes for metastasis. By providing nutrition and an escape route from the primary site, angiogenesis is also required for tumor metastasis. Phosphatidylinositol 3-kinases (PI3Ks) are well known to play important roles in tumorigenesis as well as metastasis. ZSTK474 is a specific PI3K inhibitor developed for solid tumor therapy. In the present report, antimetastatic activities of ZSTK474 were investigated in vitro by determining the effects on the main metastatic processes. ZSTK474 exhibited inhibitory effects on migration, invasion and adhesive ability of prostate cancer PC3 cells. Furthermore, ZSTK474 inhibited phosphorylation of Akt substrate-Girdin, and the secretion of matrix metalloproteinase (MMP), both of which were reported to be closely involved in migration and invasion. On the other hand, ZSTK474 inhibited the expression of HIF-1α and the secretion of vascular endothelial growth factor (VEGF), suggesting its potential antiangiogenic activity on PC3 cells. Moreover, we demonstrated the antiangiogenesis by determining the effect of ZSTK474-reduced VEGF on tube formation of human umbilical vein endothelial cells (HUVECs). In conclusion, ZSTK474 was demonstrated to have potential in vitro antimetastatic effects on PC3 cells via dual mechanisms: inhibition of metastatic processes including cell migration, invasion and adhesion, and antiangiogenesis via blockade of VEGF secretion.  相似文献   

17.
Age-related macular degeneration (AMD) is central vision loss with aging, was the fourth main cause of blindness in 2015, and has many risk factors, such as cataract surgery, cigarette smoking, family history, hypertension, obesity, long-term smart device usage, etc. AMD is classified into three categories: normal AMD, early AMD, and late AMD, based on angiogenesis in the retina, and can be determined by bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E)-epoxides from the reaction of A2E and blue light. During the reaction of A2E and blue light, reactive oxygen species (ROS) are synthesized, which gather inflammatory factors, induce carbonyl stress, and finally stimulate the death of retinal pigment epitheliums (RPEs). There are several medications for AMD, such as device-based therapy, anti-inflammatory drugs, anti-VEGFs, and natural products. For device-based therapy, two methods are used: prophylactic laser therapy (photocoagulation laser therapy) and photodynamic therapy. Anti-inflammatory drugs consist of corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). Anti-VEGFs are classified antibodies for VEGF, aptamer, soluble receptor, VEGF receptor-1 and -2 antibody, and VEGF receptor tyrosine kinase inhibitor. Finally, additional AMD drug candidates are derived from natural products. For each medication, there are several and severe adverse effects, but natural products have a potency as AMD drugs, as they have been used as culinary materials and/or traditional medicines for a long time. Their major application route is oral administration, and they can be combined with device-based therapy, anti-inflammatory drugs, and anti-VEGFs. In general, AMD drug candidates from natural products are more effective at treating early and intermediate AMD. However, further study is needed to evaluate their efficacy and to investigate their therapeutic mechanisms.  相似文献   

18.
2-deoxy-D-Ribose (2dDR) was first identified in 1930 in the structure of DNA and discovered as a degradation product of it later when the enzyme thymidine phosphorylase breaks down thymidine into thymine. In 2017, our research group explored the development of wound dressings based on the delivery of this sugar to induce angiogenesis in chronic wounds. In this review, we will survey the small volume of conflicting literature on this and related sugars, some of which are reported to be anti-angiogenic. We review the evidence of 2dDR having the ability to stimulate a range of pro-angiogenic activities in vitro and in a chick pro-angiogenic bioassay and to stimulate new blood vessel formation and wound healing in normal and diabetic rat models. The biological actions of 2dDR were found to be 80 to 100% as effective as VEGF in addition to upregulating the production of VEGF. We then demonstrated the uptake and delivery of the sugar from a range of experimental and commercial dressings. In conclusion, its pro-angiogenic properties combined with its improved stability on storage compared to VEGF, its low cost, and ease of incorporation into a range of established wound dressings make 2dDR an attractive alternative to VEGF for wound dressing development.  相似文献   

19.
反义核酸药物与抗肿瘤研究   总被引:1,自引:0,他引:1  
现在各国正在利用反义技术发展一类由核酸组成的新型药物,即反义核酸药物。我们合成了5种血管内皮生长因子(VEGF)的反义寡聚脱氧核苷酸(ODN_S)。测定了它们在S180肿瘤细胞中对VEGF表达的抑制作用,还测定了它们在鼠角膜肿瘤模型上抑制由肿瘤引起的新生血管形成和肿瘤的生长。结果表明,部分硫代的或发夹结构修饰的ODNs均可有效抑制VEGF的表达、肿瘤的生长和新生血管的形成。线性的ODN效果不好。两种作用于不同位点的ODN联合使用可得到最好的效果。因此反义VEGF寡聚脱氧核苷酸有望成为抗肿瘤和抗新生血管形成的新型药物。  相似文献   

20.
Medullary thyroid carcinoma (MTC) is a tumor deriving from the thyroid C cells. Vandetanib (VAN) and cabozantinib (CAB) are two tyrosine kinase inhibitors targeting REarranged during Transfection (RET) and other kinase receptors and are approved for the treatment of advanced MTC. We aim to compare the in vitro and in vivo anti-tumor activity of VAN and CAB in MTC. The effects of VAN and CAB on viability, cell cycle, and apoptosis of TT and MZ-CRC-1 cells are evaluated in vitro using an MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. In vivo, the anti-angiogenic potential of VAN and CAB is evaluated in Tg(fli1a:EGFP)y1 transgenic fluorescent zebrafish embryos by analyzing the effects on the physiological development of the sub-intestinal vein plexus and the tumor-induced angiogenesis after TT and MZ-CRC-1 xenotransplantation. VAN and CAB exert comparable effects on TT and MZ-CRC-1 viability inhibition and cell cycle perturbation, and stimulated apoptosis with a prominent effect by VAN in MZ-CRC-1 and CAB in TT cells. Regarding zebrafish, both drugs inhibit angiogenesis in a dose-dependent manner, in particular CAB shows a more potent anti-angiogenic activity than VAN. To conclude, although VAN and CAB show comparable antiproliferative effects in MTC, the anti-angiogenic activity of CAB appears to be more relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号