首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present two‐parted study, a numerical approach is shown to consider fire resistance tests in virtual space, including the combustion, thermal analysis of the test specimen, and the deformation process. This part is dealing with the combustion process and thermal analysis of different building materials tested in a fire resistance furnace. Instead of using coupled computational fluid dynamics (CFD)/finite element method simulation for the combustion and thermal heat conduction in the solid, which is commonly used in literature, the present approach considers these transport phenomena in one CFD simulation. This method enables a two‐way coupling between the gas phase and the solid material, where chemical reactions and the release of volatile components into the gas phase can occur (eg, release of water vapour from gypsum). To validate the numerical model, a fire resistance test of a steel door, which is a multilayer construction, and a wall made of gypsum blocks were experimentally and numerically investigated. Due to the chemical reactions inside the gypsum, water vapour is released to the gas phase reducing the flue gas temperature about 80 K. This effect was taken into account using a two‐way coupling in the CFD model, which predicted temperatures in close accordance to the measurement.  相似文献   

2.
Ziqing Yu  Aixi Zhou 《火与材料》2014,38(1):100-110
This study evaluates the effect of flame heat flux on the prediction of thermal response and fire properties of a char‐forming composite material. A simplified two‐layer flame model was developed and incorporated into a heat transfer thermal model to predict the thermal response and fire reaction characteristics of a burning material. A typical char‐forming material, E‐glass reinforced polyester composite, was used in the study. A cone calorimeter was used to measure the fire reaction characteristics of the composite. The flame heat flux in a cone calorimeter test setup was estimated using the simplified flame model. Thermal response and fire property predictions with and without the effect of flame heat flux were compared with experimental data obtained from the cone calorimeter tests. Results showed that the average flame heat flux of the composite in a cone calorimeter was 19.1 ± 6 kW/m² from model predictions. The flame had a significant effect on the thermal response and fire properties of the composite around the first heat release peak but the effect decreased rapidly afterwards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Empirical molar group contributions to the thermal combustion properties measured by microscale combustion calorimetry were determined by multiple linear regression of data for engineering polymers of known chemical composition. Char yield, heat of combustion and heat release capacity of polymers calculated from their chemical structure using optimized additive molar group contributions were in reasonable agreement with measured values for these properties. The relationship between the thermal combustion properties and the results of standardized flame and fire tests (i.e., flammability) was examined statistically for an expanded data set.  相似文献   

4.
A novel flame‐retardant synergist, chitosan/urea compound based phosphonic acid melamine salt (HUMCS), was synthesized and characterized by Fourier transform infrared spectroscopy and 31P‐NMR. Subsequently, HUMCS was added to a fire‐retardant polypropylene (PP) compound containing an intumescent flame‐retardant (IFR) system to improve its flame‐retardant properties. The PP/IFR/HUMCS composites were characterized by limiting oxygen index (LOI) tests, vertical burning tests (UL‐94 tests), microscale combustion calorimetry tests, and thermogravimetric analysis to study the combustion behavior and thermal stability. The addition of 3 wt % HUMCS increased the LOI from 31.4 to 33.0. The addition of HUMCS at a low additive amount reduced the peak heat‐release rate, total heat release, and heat‐release capacity obviously. Furthermore, scanning electron micrographs of char residues revealed that HUMCS could prevent the IFR–PP composites from forming a dense and compact multicell char, which could effectively protect the substrate material from combusting. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40845.  相似文献   

5.
This paper applies a unique integrated approach to determine the flammability properties of a composite material (epoxy with carbon fibre) and compares its fire behaviour at two different thicknesses (2.1 and 4.2 mm) by performing small scale (thermo‐gravimetric analysis (TGA)/Fourier transform infrared radiation) and meso‐scale tests (cone calorimeter). For small‐scale tests, experiments were conducted in nitrogen using TGA coupled to gas analysis by Fourier transform infrared radiation. These results allow the determination of thermal stability, main degradation temperature and main gaseous emissions released during the thermal degradation. For meso‐scale tests, experiments were carried out using a cone calorimeter with sample dimensions of 100 × 100 mm at five heat fluxes (30, 40, 50, 60 and 70 kW/m2). The results show that the ignition time increases with an increase in the thickness of the material. Relative hazard classification of the fire performance of the current composites has also been compared with other materials using parameters obtained elsewhere. In addition, the effective ignition, thermal and pyrolysis properties obtained from the ignition and mass loss rate experiments for the 4.2‐mm thick samples were used in a numerical model for pyrolysis to predict well ignition times, back‐surface temperatures and mass pyrolysis rates for all heat fluxes as well as for the 2.1‐mm thick samples. Note that the ignition temperature obtained in the cone agrees with the main degradation temperature in the TGA. The flammability properties deduced here can be used to predict the heat release rate for real fire situations using CFD modelling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Theoretical formulations are presented for the fire growth processes under external radiant heating. They included ignition, burning and energy release rate, and flame spread. The behaviour of these processes with external heating is described along with the critical conditions that limit them. These include the critical heat fluxes for ignition, flame spread and burning rate. It is shown how these processes and their critical conditions depend on a limited number of properties measurable by a number of standard test methods. The properties include heat of combustion, the heat of gasification, ignition temperature and the thermal properties of the material. Alternatively, the properties could be related to parameters easily found from data; namely: (1) the critical heat flux (CHF) for ignition; (2) the slope of the energy release rate with externally imposed flux, defined as heat release parameter (HRP); and (3) the ignition parameter, defined as thermal response parameter (TRP). It is further shown that the flame heat flux differences between small laminar flame ignition sources and larger turbulent flames can affect flame spread due to heat flux and ignition length factors. Finally, it is found that the critical energy release rates theoretically needed for ignition, sustained burning, and turbulent upward flame spread are roughly 13, 52, and 100 kW/m2, respectively, and independent of material properties. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A total of 21 electrical cables were made, all with identical construction but differing in the chemical composition of their plastic components, both jacket (or sheath) and insulation. All the compounds used were commercially available materials, but they covered a variety of polymers, both halogenated and non-halogenated. All cables were tested in a large-scale cable tray test, the proposed ASTM D9.21 test, based on the IEEE 1202 or the CSA FT-4 test, modified to measure heat and smoke release in the duct and with a total length of 2.44 m. The peak rate of heat release measured served as an excellent criterion for distinguishing between cables passing and failing the test (the traditional criterion being char length). The average rate of heat released also served to distinguish the two classes of cables. Moreover, cables passing the test tended to release less smoke than those failing the test. The cables were also tested in the IEC 332-3 cable tray test. The small-scale fire test used for the cables was the cone calorimeter, ASTM E 1354. The trends observed in this heat release test were similar to those in the large-scale test. The results indicate that cables with excellent fire performance can be made by using a variety of materials, so that it would seem to follow that it is important to specify fire performance and leave material choice to manufacturers.  相似文献   

8.
The fire behavior of various large samples polymers assemblies is an under‐researched topic. In fire risk assessment, the resultant heat release rate of burning different combustibles has to be known. To highlight interactions between components, 2 types of configurations were tested: juxtaposed and layered materials, using a specific radiant panel setup. For juxtaposed assemblies, results indicated that the more flammable component acted as an accelerator for the global combustion kinetics. For layered assemblies, 2 main phenomena were evidenced: the front material acted as a shield delaying the combustion of the backside material and the presence of a backside material induced a thermal thickening that slowed down the combustion of the front material. The experimental burning behaviors of the assembly were compared with a simulated one calculated from the superposition principle. This method was described by introducing a time offset and/or a slowdown factor in the model, confirmed with the use of different assemblies.  相似文献   

9.
The paper deals with probabilistic modeling of heat transfer throughout plasterboard plates when exposed to an equivalent ISO thermal load. The proposed model takes into account data and model uncertainties. This research addresses a general need to perform robust modeling of plasterboard‐lined partition submitted to fire load. The first step of this work concerns the development of an experimental thermo physical identification data base for plasterboard. These experimental tests are carried out by the use of a bench test specially designed within the framework of this research. A computational heat transfer model is constructed using data from the literature and also the identified plasterboard thermophysical properties. The developed mean model constitutes the basis of the computational stochastic heat transfer model that has been constructed employing the nonparametric probabilistic approach. Numerical results are compared to the experimental ones. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The paper aims to explain the differences found in the heat release rate measurements in a large sample of standard fire tests (EN 1363-1). A total of 379 tests of vertical assemblies was investigated, all performed in furnace SPARK of the ITB Fire Testing Laboratory, in 2015-2018. The assemblies were subdivided into two groups—wall assemblies and fire-rated doors. These assemblies were also compared with the results of the test of a wall built with aerated autoclaved concrete blocks that was considered as the benchmark test. It was observed that walls built with highly insulated sandwich panels require less heat to maintain standard thermal exposure conditions (20%-30% less) than their counterparts built from gypsum plasterboard or aluminium and fire-rated glass. In case of doors, it was observed that combustible samples required significantly less heat than the benchmark case (40%-70% less), which indicates that the combustion of the sample inside of the furnace was an additional, significant source of heat release, that may skew the qualitative assessment of their performance in fire. A more in-depth discussion of the results is provided, with some ideas on the direction of further developments in fire testing.  相似文献   

11.
几种热塑性塑料的燃烧行为研究   总被引:7,自引:0,他引:7  
王庆国  张军等 《中国塑料》2002,16(12):55-59
应用锥形量热仪研究了几种常见热塑性塑料在燃烧过程中的燃烧行为,定量得到聚乙烯(HDPE、LDPE)、聚丙烯、高抗冲聚苯乙烯和聚氯乙烯等在不同入射热流强度(25kW/m^2、50kW/m^2、75kW/m^2)下的热释放速率、质量损失速率、有效燃烧热和总释放热等燃烧性能参数;分析比较了各热塑性塑料的燃烧行为特性,为火灾预防和材料设计提供了文献资料。  相似文献   

12.
彭建文  彭中朝  宋强  李端生  黄若森  唐刚 《塑料》2020,49(2):32-35,39
采用简单方法合成苯基次膦酸铈(CeP),并将其作为阻燃剂加入聚乳酸(PLA)中,通过熔融共混技术制备聚乳酸/苯基次膦酸铈(PLA/CeP)复合材料。通过热重(TG)、极限氧指数(LOI)、UL-94垂直燃烧(UL-94)、微型量热(MCC)研究复合材料的热稳定性、阻燃性能和燃烧性能。通过阻燃测试发现,CeP能够提高复合材料阻燃性能,PLA/CeP20极限氧指数能达到24.3%并通过UL-94 V-2级别。热重分析的结果表明,CeP显著提高了PLA/CeP复合材料初始分解温度和成炭率。MCC测试结果表明,CeP能明显降低PLA/CeP复合材料火灾危险性。PLA/CeP20热释放速率峰值(PHRR)和总热释放(THR)分别为397 W/g和13.6 kJ/g,与纯聚乳酸相比,分别下降了13.9%和28.0%。因此,苯基次磷酸铈对聚乳酸具有良好的阻燃效果。  相似文献   

13.
This paper investigates the fundamental fire properties of surrogate refuse‐derived fuels (RDF), a class of multicomponent materials characterized by high void fraction, with particles of polydisperse sizes and significant internal porosity. A surrogate RDF was developed to improve the reproducibility of experimental measurements. This surrogate RDF reflects typical municipal solid waste collected in the city of Newcastle, in the state of New South Wales in Australia. The material consists of shredded newspaper, wood, grass and plastic bags, with small amounts of sugar and bread. About 95% of the material passes through 50 mm square screens, as required by ASTM E828 standard for RDF‐3 specification. The experiments presented in this paper were performed with the components of the RDF dried in a forced‐air oven at 103° C, except for grass which was dried under nitrogen. The material was found to be very hygroscopic, requiring special care in handling. The experiments performed in the cone calorimeter were designed to measure the heat release rate, total heat release, time to ignition, time to extinction, effective heat of combustion and formation of CO during the combustion process, as a function of sample thickness, sample density and the magnitude of the imposed radiative heat flux. The thermophysical properties of the surrogate material were either measured (solid density, void space, particle density, particle porosity) or extracted from the published data (heat capacity). The present surrogate RDF material was found to ignite easily, within a few seconds of the imposition of the incident heat flux of 40 kW m?2, and then to reach rapidly the peak heat release rate of 110–165 kW m?2. The deduced values of the critical heat flux, pyrolysis temperature and effective thermal conductivity are 9–10 (±2) kW m?2, 280–310 (±30)° C, and 0.4–0.7 (±0.3) W m?1 K?1, respectively, depending on the material density. The effective heat of combustion of the RDF was estimated as 15.3 MJ kg?1. The material produced 1 kg of CO per 18 kg of dried RDF, mostly during smouldering phase after the extinguishment of the flaming combustion. These results indicate that dried RDF pose significant fire risks, requiring that fire safety systems be implemented in facilities handling RDF. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Organoclay glass fibre reinforced polymer (GFRP) nanocomposites are fabricated using the vacuum assisted resin transfer moulding. The unsaturated polyester resin is prepared with and without organoclay involving mechanical mixing, sonication, dilution solvent and heat treatment. Three levels of organophilic clay content are added, and its influences on the fire performance of composite samples are investigated. A novel numerical procedure combining pyrolysis analysis of the organoclay‐composites and the fire dynamic simulation of the combustion process are developed to validate the thermal responses obtained from the cone calorimetry experiments. Kinetic parameters obtained from the TGA tests and pyrolysis analyses are used as inputs for the models measuring the fire growth index and total heat release. To account for multilayer composite structure and organoclay distribution, three numerical models are proposed including composite (CPS), component (CPN) and CPN‐layer models. While CPS model assumes the homogeneity of the composite, later models consider multilayer effects with uniform (CPN model) or concentrated (CPN‐layer model) distribution of organoclay. Numerical results are compared with experimental ones in terms of total heat release, fire growth index. Finally, the fire resistance and total smoke release of the polyester/glass composites with the addition of organoclay will be evaluated taking into account influences of the fabrication processes.  相似文献   

15.
Modelling fire performance of building fire barriers would allow optimising the design solutions before performing costly fire resistance tests and promote performance‐based fire safety engineering. Numerical heat conduction analysis is widely used for predicting the insulation capability of fire barriers. Heat conduction analysis uses material properties and boundary condition parameters as the input. The uncertainties in these input parameters result in a wide range of possible model outcomes. In this study, the output sensitivity of a heat conduction model to the uncertainties in the input parameters was investigated. The methodology was applied to stone wool core sandwich panels subjected to the ISO 834 standard fire resistance temperature/time curve. Realistic input parameter value distributions were applied based on material property measurements at site and data available in literature. A Monte Carlo approach and a functional analysis were used to analyse the results. Overall, the model is more sensitive to the boundary conditions than to the material thermal properties. Nevertheless, thermal conductivity can be identified as the most important individual input parameter.  相似文献   

16.
It is of great interest to understand the stabilization effect of steel structures by steel claddings in fire. Structural fire analysis using finite-element method, including temperature analysis and structural analysis, is important to investigate the stabilization effect. However, temperature-dependent thermal material data for the insulation layer of sandwich panels and the intumescent paint for fire protection of steel sections are still scarce. In this paper, the available thermal properties of these materials from the literature are summarized, and 2D and 3D temperature analyses were carried out for steel sections with steel claddings, such as sandwich panels with mineral wool and polyisocyanurate (PIR) cores and trapezoidal sheeting with mineral wool insulation. The analysis results were compared with the fire tests conducted in European research project STABFI (Stabilization of Steel Structures by Steel Claddings in Fire). The study shows reasonable accuracy of modeling using existing thermal material data for temperature-dependent insulation properties and thermal data for intumescent paint, for intumescent coatings (IC) protected steel beam with mineral wool sandwich panel and trapezoidal sheeting claddings. Larger discrepancy between finite element (FE) prediction and test measurement was observed for the case of sandwich cladding with PIR core. Gaps for further research were identified. The study also shows the heat sink effect of the steel section by sandwich panels with a mineral wool core. Therefore, it is recommended that the sandwich panels should be included in the thermal analysis model for steel sections with sandwich claddings.  相似文献   

17.
The personal protective equipment of workers exposed to heat can consist of materials with a relatively low melting point of approximately 250°C (membranes, zippers, and underwear). In particular, users of heat protective clothing (such as volunteer firefighters or industrial workers) are often consider using functional sports underwear for an optimized sweat transport and lower heat stress. However, in an emergency situation (flame engulfment), this kind of clothing can be potentially dangerous because of its low melting temperature. In this study, we investigated the critical heat transfer needed to melt synthetic underwear worn under heat protective clothing and developed a model to predict possible damage to material layers exposed to a flame engulfment condition. The fire protection properties of four clothing systems with varying layer structures were assessed. These combinations were tested on an instrumented manikin according to ISO 13506 (flame engulfment test). The thickness and thermal resistance of the individual garments were measured in order to examine the influence of each parameter on the performance of the complete clothing combination. The measurements showed that synthetic polyester underwear worn underneath heat protective clothing can withstand a 4s flame engulfment exposure without damage when the outer layer has an adequate thermal resistance. By using a simple heat transfer model, we could define a ‘critical thermal resistance’ as the thermal resistance of the outer layer required to prevent the melting of the underwear material. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This study aims to develop a complete methodology for assessing flammability hazards of typical fuels (ie, transformer oil, hydraulic oil, gear oil, and lubricating grease) used in a wind turbine nacelle by combining different experimental techniques such as thermogravimetric analysis and cone calorimetry. Pyrolysis properties (onset temperature, temperature of maximum mass loss rate, and mass residue) and reaction‐to‐fire properties (ignition time, heat release rate, mass loss rate, and smoke release rate) were determined and used for a preliminary assessment of thermal stability and flammability hazards. Additional indices, for ignition and thermal behavior (effective heat of combustion, average smoke yield, and smoke point height, heat release capacity, fire hazard parameter, and smoke parameter, were calculated to provide a more advanced assessment of the hazards in a wind turbine. Results show that pyrolysis of transformer oil, lubricating grease, hydraulic oil, and gear oil occur in the range of 150°C to 550°C. Lubricating grease and transformer oil show the higher and lower thermal stabilities with maximum pyrolysis rate temperatures of 471°C and 282°C, respectively. The measured relation between ignition time and radiant heat flux agrees well with Janssens method (a power of 0.55). The aforementioned indices appear to provide a reasonable prediction of performance under real fire conditions according to a full‐scale fire test documented by Declercq and Van Schevensteen. The results of the study indicate that transformer oil is the easiest to ignite while lubricating grease is the most difficult to ignite but also has the highest smoke production rate; that transformer oil has the highest heat release rate while gear oil has the lowest; and that the fire hazard parameter is the highest for transformer oil and the smoke parameter is the highest for lubricating grease. The potential of this type of work to design safer wind turbines under performance‐based approaches is clearly clarified.  相似文献   

19.
Surfaces of novel foam core sandwich panels were adhered with intumescent fire‐retardant paper underneath the veneers (FRV) to improve their flammability properties. The panels were evaluated by means of cone calorimeter test (ASTM E 1354). Variables tested were different surface layer treatments, adhesives used for veneering, surface layer thicknesses, and processing conditions, having the objective of obtaining similar or better flammability as that of solid particle boards. Previous research showed that sandwich panels without FRV compared to panels with FRV generally had much higher heat release rates, somewhat higher heat of combustion and much higher smoke production due to the polymeric foam component of tested panels. The present study shows that using FRV adhered to the surface layer of sandwich panels dramatically improved flammability properties; the best FRV performance resulted from panels produced with thicker face layer (5 mm) and lower press temperature (130°C) and adhered with an acrylic thixotropic adhesive. Such protected foam core particleboard has heat release rate profiles as low as that is typical of commercially available fire‐retardant–treated plywood, thus implying a low flammability rating when tested in accordance with both single burn item (Euro Class B anticipated) and steiner tunnel (North America Class A anticipated) tests.  相似文献   

20.
探索了一种聚丙烯木塑复合材料高效无毒、环境友好、价格便宜的阻燃方法。通过向其中添加无机硅酸盐与有机硅橡胶组合物加工成复合材料,使其在燃烧时表面形成陶瓷结构起到防火隔热的作用,从而提高材料的阻燃性能。采用垂直燃烧测试、氧指数测试、锥形量热测试、扫描电镜和热重分析等一系列研究手段,对复合材料燃烧前后的性能与结构进行比较分析。结果表明,陶瓷化组合物的添加可以提高聚丙烯木塑复合材料的阻燃效率,延缓热降解过程,有效地抑制热释放速率和烟释放量以及可燃气体的逸出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号