共查询到20条相似文献,搜索用时 15 毫秒
1.
The two types of joint discussed in this paper are a thick adherend symmetrical lap joint, and a symmetrical double lap joint. The effect of varying adherend and adhesive thicknesses on the stress distribution in the thin adhesive layer is discussed. These analyses were used in the design on a lap shear test to characterize certain aerospace adhesives used in bonded repair of structural components. An alternative analytical approach for the estimation of the load-carrying capacity of the double lap joint is also presented. 相似文献
2.
M. Hildebrand 《International Journal of Adhesion and Adhesives》1994,14(4):261-267
Non-linear finite element methods are applied in the analysis of single lap joints between fibre-reinforced plastics (FRP) and metals. The importance of allowing for both geometric and material non-linearities is shown. The optimization of single lap joints is done by modifying the geometry of the joint ends. Different shapes of adhesive fillet, reverse tapering of the adherend, rounded edges and denting are applied in order to increase the joint strength. The influence of the joint-end geometry is shown for different metal adherend/FRP adherend/adhesive combinations. The results of the numerical predictions suggest that with a careful joint-end design the strength of the joints can be increased by 90–150%. 相似文献
3.
4.
Employing a functionally graded adhesive the efficiency of adhesively bonded lap joints can be improved significantly. However, up to now, analysis approaches for planar functionally graded adhesive joints are still not addressed well. With this work, an efficient model for the stress analysis of functionally graded adhesive single lap joints which considers peel as well as shear stresses in the adhesive is proposed. Two differential equations of the displacements are derived for the case of an axially loaded adhesive single lap joint. The differential equations are solved using a power series approach. The model incorporates the nonlinear geometric characteristics of a single lap joint under tensile loading and allows for the analysis of various adhesive Young׳s modulus variations. The obtained stress distributions are compared to results of detailed Finite Element analyses and show a good agreement for several single lap joint configurations. In addition, different adhesive Young׳s modulus distributions and their impact on the peel and shear stresses as well as the influence of the adhesive thickness are studied and discussed in detail. 相似文献
5.
Incorporation of additives into the adhesive layer in adhesively bonded joints can improve the stress distriution in the adhesive layer and increase adhesive toughness. In this paper, the geometric and material parameters of metal fibers utilized for strengthening adhesively bonded single lap joints under flexural loading were investigated by using experimental investigations and finite element modeling. According to the experimental results, incorporating metal fibers in the adhesive layer of a bonded joint can have a significant impact on the flexural load bearing of the joint. This was in relationship with the numerical results foreseeing enhanced stress distributions of the adhesive layer, when the metal fibers were added to the adhesive layer. Some important parameters in the design of metal fiber-reinforced adhesive joints include the volume fraction (the distance between the fibers and the fiber diameter), orientation, and mechanical properties of the fibers. It was concluded that the peak normal stresses in the adhesive layer can be reduced, and consequently the load bearing of the joint can be improved by reducing the distance between the fibers, increasing the fiber diameter and choosing a stiffer material for the fibers in the longitudinal direction. 相似文献
6.
7.
8.
Better fatigue performance of adhesively bonded joints makes them suitable for most structural applications. However, predicting the service life of bonded joints accurately remains a challenge. In this present study, nonlinear computational simulations have been performed on adhesively bonded single lap ASTM-D1002 shear joint considering both geometrical and material nonlinearities to predict the fatigue life by judiciously applying the modified Coffin-Manson equation for adhesive joints. Elasto-plastic material models have been employed for both the adhesive and the adherends. The predicted life has close agreement in the high cycle fatigue (HCF) regime with empirical observations reported in the literature. 相似文献
9.
A method for improving the mechanical behavior of adhesive joints is embedding metal macrofibers to the adhesive layer. The effect of the orientation of metal macrofibers laid across the length and width of the joint (longitudinal and transversal directions) on the strength and elongation at failure of single lap joints (SLJs) was investigated experimentally by testing SLJs reinforced with metal macrofibers laid in different orientations. The experimental results indicated that increasing the number of metal macrofibers in the longitudinal direction improved the shear strength and elongation at failure of SLJs. However, the improvements were found to be dependent on the normalized horizontal distance between the metal macrofibers for which a proper value of 1 was determined. While embedding metal macrofibers in the transversal direction degraded the mechanical properties of SLJs. Finite element analyses were undertaken to investigate the effects of fibers orientation and horizontal distance on the adhesive peel and shear stress distributions. The results revealed that decreasing the horizontal distance between the metal macrofibers laid in the longitudinal direction decreased the adhesive shear stress values indicating improvement of the joint strength, while in SLJs reinforced with metal macrofibers laid in the transversal direction decreasing the fibers distance increased the adhesive peel stress values resulting in joint strength reduction. 相似文献
10.
11.
《Journal of Adhesion Science and Technology》2013,27(11):1343-1360
When an adhesively bonded joint is exposed to a high environmental temperature, the tensile load capability of the adhesively bonded joint decreases because the elastic modulus and failure strength of the adhesive decrease. In this paper, the elastic modulus and failure strength of the adhesive as well as the tensile load capability of the tubular single lap adhesively bonded joint were experimentally and theoretically investigated with respect to the volume fraction of filler and the environmental temperature. Two types of fillers - Al2O3 (alumina) and chopped fiber E glass - were used. From the experiment, it was found that the elastic modulus and failure strength of the adhesive increased in accordance with the increase of volume fraction of the filler and decreased with the environmental temperature rise. It was also found that the tensile load capability of the tubular single lap adhesively bonded joint decreased as the environmental temperature increased; however, it had no correlation with the volume fraction of filler because of the effect of the fabrication thermal residual stresses generated by the CTE difference between the adherend and adhesive. 相似文献
12.
Katarzyna Korzynska Wladyslaw Zielecki 《Journal of Adhesion Science and Technology》2018,32(17):1849-1860
The possibility of improving the strength of single lap joints (SLJs) made of Ti6Al4V alloys and adhesively bonded using Araldite 2014-1 with the help of pneumatic ball peening was investigated. The effects of pneumatic ball peening conditions on the joint strength and residual stress of the plates were determined using mathematical models, i.e. second-degree polynomials. A clear correlation was observed between the joint strength and the post-machining residual stress. Moreover, the stress values could be controlled. Pneumatic ball peening was found to be an easy and effective method for improving the joint strength (up to 57%) of SLJs. 相似文献
13.
K. Ikegami T. Fujii H. Kawagoe H. Kyogoku K. Motoie K. Nohno T. Sugibayashi F. Yoshida 《International Journal of Adhesion and Adhesives》1996,16(4):219-226
The RC99 committee of the Japan Society for Mechanical Engineers conducted the benchmark tests on strengths of adhesive joints using different testing methods. The effects of joint configuration, loading mode, adherend yield strength and so on, on the strength and data scatter were investigated using two typical epoxy adhesives. The strengths obtained by various tests were compared with each other. The relationships among strengths of butt, single lap and double lap joints and fracture toughness were given. Thirteen member institutes of the committee participated in this project. The benchmark results allow us to recognize that the joint strengths are strongly affected by the curing process. The key to obtaining the appropriate joint strength, is precise temperature control inside the adhesive layer for curing. Toughened adhesives do not always give higher joint strengths than untoughened adhesives. The yield strength of adherends much affects the observed lap joint strength of adhesives. 相似文献
14.
Salih Akpinar Murat Demir Aydin Adnan Özel 《Journal of Adhesion Science and Technology》2013,27(23):2591-2602
In this work, elasto-plastic stress analysis of single lap joints with and without protrusion in adhesive bondline subjected to tension and bending was carried out using 2D non-linear finite element analysis and confirmed experimentally. AA 2024-T3 aluminum adherends were bonded with SBT 9244 film adhesive. The protrusion was obtained by extending the adhesive film by 2?mm from the overlap length at both overlap ends. Three different adherend thicknesses and overlap lengths for each loading and bondline type were used. The joints with and without protrusion, for comparison, were loaded with the same load for each adherend thickness and overlap length. Finally, it was observed that the protrusion reduces the strength in the joint under tension, while the protrusion increases the strength in the joint under bending. 相似文献
15.
16.
Four-point bend tests were performed on single lap joints with hard steel adherends and a structural epoxy adhesive. The effect of the overlap, the adherend thickness and the adhesive thickness was studied. It was found that the length of the overlap has no significant effect on the strength of the joints. This is because the load transfer is occurring in a very localised area around the edges of the overlap, being the failure governed by peel mechanisms. The thickness of the adherends strongly affects the strength of the joints. The thicker the adherend, the stronger is the joint. The experimental results are compared with a finite element model and reinforce the fact that the failure takes place due to local strains at the ends of the overlap in tension. An analytical model is also given to predict in a simple but effective way the joint strength and its dependence on the adherend thickness. 相似文献
17.
18.
A. Akhavan-Safar S. Rastegar L. F. M. da Silva 《Journal of Adhesion Science and Technology》2018,32(18):2019-2040
This paper deals with the application of fracture mechanics approaches for predicting the residual static strength and the crack kinking angle of adhesively bonded joints containing interfacial edge pre-cracks. The interfacial cracks are created due to different factors such as inappropriate surface preparation which cause a significant reduction of the joint strength. To investigate the residual strength of interfacial cracked adhesive joints and predict the crack kinking angle, three different approaches including the maximum tangential stress (MTS), the minimum strain energy density (SED) and the maximum tangential strain energy density (MTSED) were assessed. To this end, single lap joints (SLJs) containing a brittle adhesive material and with different pre-crack sizes and various substrate thicknesses were manufactured and tested. The results were also verified by applying fracture mechanics approaches on previously published experimental data. According to the results, it was concluded that in mode II dominant cases, the predictions of kinking angle using the MTS method was in good agreement with the experimental observations, while in mode I dominant cases the mentioned approach provided poor predictions. It was also found that the SED criterion could be a precise model for predicting the crack extension angle in mode I dominant conditions. The results also showed that the MTS criterion predicts the residual static strength of interfacial cracked adhesive joints very well. 相似文献
19.
《Journal of Adhesion Science and Technology》2013,27(8):931-957
The use of a fracture mechanics test to evaluate the joint strength through the determination of the strain energy release rate G is nowadays well established. The joint strength for fluorinated polymer (PVDF) sheets bonded with an epoxy adhesive was studied using a double cantilever beam (DCB). In order to obtain small-scale yielding, the adhesive joint of the polymer specimens was strengthened by steel sheets. Pre-cracks were initiated at the center of the bond thickness separating the two PVDF surfaces, with nominal lengths ranging from 5 to 27.5 mm. We did not measure the evolution of the crack length, which is generally very difficult to obtain with good precision. The measurement of the load-point displacement was used instead. The opening load versus this load-point displacement was recorded. The slope of the first part of this curve gives the value of the initial stiffness of the joint specimen. The stiffness of the various specimens enables us to access the real experimental initial crack length, which was smaller than the nominal value, by comparison of the experimental values with the numerical ones. From the second part of the curve, the strain energy release rate values for the crack propagation in the initial step (Gl) and in the steady step (Gc) are deduced. They were calculated from a least-squares linear fit obtained from the load-point displacement versus the inverse square of the load curve. The experimental results are discussed in light of an analytical analysis using the thin beams approach, improved with an elastic foundation model developed by Maugis, describing the deformation of materials behind the crack tip, and of a numerical approach based on a finite element analysis. In this numerical model, an elastic-plastic behavior of the materials has been assumed. Analytical and numerical approaches are compared and their validity and limitations are discussed. 相似文献