首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Asano  Y Fujiwara 《Polymer》1978,19(1):99-108
Isotactic polypropylene was crystallized by the oriented growth method and the oriented β-phase obtained. This has unidirectional lamellar orientation with the lamellar long axis parallel to the growth direction, the lamellae being twisted along this direction. The sample plates were cold-rolled in three orthogonal directions, and the deformation behaviour of each case was investigated chiefly by wide-angle and small-angle X-ray diffraction methods. It was revealed that deformation takes place by a different mechanism in each case, including rotation of lamellae, interlamellar slip, chain-directional and transversal chain slip. These results are discussed in connection with the anisotropic structure of these samples due to the lamellar orientation.When the β-phase samples are rolled, α-phase crystals appear with c-axis orientation and the proportion increases with draw ratio. For crystallographic reasons it is concluded in this case that by stretching the c-axis orientation is brought about not through block formation of the original β-phase lamellae and incorporation of these blocks into microfibrils, but by melting or unfolding of the original β-phase lamellae and recrystallization to the c-axis-oriented new α-phase.  相似文献   

2.
The crystalline morphology and microstructure during stretching of polyvinylidene fluoride hard elastic film under room temperature was followed using wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). It was found that an endotherm plateau from the contribution of some new crystals formed during annealing appeared and some thinner lamellae existed in the annealed film. During stretching, the endotherm plateau disappeared and those thinner lamellae transformed into β‐phase. At the same time, some initial pores were observed. With increasing stretching ratio from 20 to 100%, the β‐phase content increased, whereas within the strain rate range of 0.003–0.034 s?1, its content was least under 0.017 s?1. During stretching, lamellae separation, crystalline morphology transformation and disappearance of grown crystals formed by annealing coexisted. From the viewpoint of pore initiation, less crystalline morphology transformation was beneficial for the lamellae separation. Higher stretching ratio resulted in the breakage of separated lamellae. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40077.  相似文献   

3.
Yongjin Li  Jichun You 《Polymer》2011,52(13):2964-2969
Amorphous oriented poly(l-lactide) (PLLA)/poly(vinyl acetate) (PVAc) 50/50 films were prepared by uniaxial drawing of melt-mixed blends at 65 °C. The morphology development and crystal organization of the blends during heat treatment under strain were investigated using small angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). Equatorial scattering maxima in the SAXS patterns for samples annealed at 75 °C were observed before the appearance of crystal reflections. Further annealing of the samples at higher temperature induced two further discrete meridian scattering maxima. The observations indicated that homogenous oriented PLLA/PVAc film undergoes micro-phase separation first, followed by crystallization of PLLA in the PLLA-rich phase. The micro-phase separated PVAc nanodomains are aligned parallel to the stretching direction, whereas the crystallized PLLA lamellae are oriented perpendicular to the stretching direction (crystal c-axis along the stretching direction). Micro-phase separation was not observed when films were annealed at 120 °C, at which temperature the high crystallization rate of PLLA overwhelmed the micro-phase separation process.  相似文献   

4.
Cast films, based on polypropylene (PP), were prepared via melt extrusion and, then, annealed below the melting temperature. The effect of annealing conditions on the properties of the films and the microporous membranes formed by stretching was investigated. It is shown that annealing is an effective method to improve the physical properties of semi-crystalline polymers by promoting chain rearrangement and creating secondary lamellae in the amorphous region. DSC results for annealed samples revealed the appearance of a shoulder endothermic peak and a new peak in the correlation function from the SAXS patterns was observed. The annealed films exhibited double yield points in the tensile deformation curves. A direct linear relationship was found between the strength of the second yield point and the fraction of the lamellae. From mercury porosimetry and SEM images of the membranes larger pore sizes and porosity were observed as the annealing time and temperature increased.  相似文献   

5.
Yongjin Li  Yuko Oono  Hiroshi Shimizu 《Polymer》2006,47(11):3946-3953
The miscibility for melt-mixed poly(vinylidene fluoride) (PVDF)/acrylic rubber (ACM) blends and the crystal morphology of PVDF in the blends were investigated over the whole composition ranges by dynamic mechanical analysis (DMA), wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). DMA measurements revealed that PVDF is miscible with ACM in ACM-rich system, and partially miscible in PVDF-rich system. Two kinds of PVDF lamellar structures with different long periods were detected by SAXS and TEM for the partially miscible blends. In the miscible system, only one kind of crystal lamellae with enlarged long period is found. The two kinds of lamellar structures in the blend show different orientation behavior during the uniaxial stretching to result in a biaxial orientation. The lamellae with short long period are oriented vertical to the stretching direction, while those with large long period were found to be oriented parallel to the stretching direction.  相似文献   

6.
Cavitation phenomenon is observed during deformation in many semicrystalline polymers above their glass transition temperature. Numerous voids (cavities) both nanometer and micrometer size are formed inside amorphous phase between lamellae during deformation of a polymer. The cavitation is observed only in tension, never during compression or shearing. Most often used methods of voids detection are: microscopies (SEM, TEM, AFM and light microscopy), small angle X-ray scattering and measurements of density. Usually the voids are detected close to yielding or at yielding, strongly suggesting that yielding is often caused by cavitation. However, there is a competition between two processes: breaking of amorphous phase leading to cavitation and plastic deformation of lamellar crystals. Which process occurs first depends on the relation between compliances of those two phases. If the crystals are weak and defected their deformation occurs (mostly by chain slips mechanism) without cavitation. If the crystals in a polymer are thick and more perfect then the barrier for their deformation, represented by shear yielding stress, is increased and the cavitation sets in first and yielding is determined by the stress needed for cavitation. Further deformation involves deformation of crystals due to rapid local change of stress around voids. The influence of different morphological factors: crystal thickness, crystallinity degree, arrangement of crystalline elements (e.g. in spherulites), morphology of amorphous phase (free volume, entanglements, tie molecules) were analyzed. Experimental factors, such as temperature of deformation and rate of deformation influence remarkably the formation of cavities. Cavitation is generated at points where a high local triaxial state of stress is developed. Triaxiality of stress can be amplified by a notch, even very mild notch with large radius of curvature stimulates generation of cavities. Evolution of nano-cavities into micro-cavities and change of their shapes with increasing deformation were evidenced by SAXS. Initially voids are oriented perpendicularly to deformation direction, however, with increasing elongation they become oriented along deformation direction. Stress whitening is visual sign of cavitation and is caused be light scattering either by microvoids or by assemblies of nanovoids.  相似文献   

7.
A. Galeski  Z. Bartczak  M. Slouf 《Polymer》2010,51(24):5780-5787
Morphology of undeformed polyethylene crystals obtained by high pressure crystallization was investigated by SEM. It was revealed by exposing the interior of the samples by microtoming followed by permanganic etching. The etching procedure was refined to reveal defected sites of lamellae in addition to differentiation of crystalline and amorphous phases. From 1 to 3 screw dislocations with large Burgers vector per 1 μm2 of lamellae basal planes were detected. Lamellae, when viewed edge-on give an impression of a “blocky architecture”, while their real shape, as seen on SEM images of flat-on and oblique lamellae, resembles platelets with a few defects in the form of screw dislocations protruding a platelet.High pressure-crystallized polyethylene samples were deformed plastically by uniaxial compression and were studied by SEM and AFM. When the deformation is interrupted dislocations are arrested within the crystals. It was observed that in contrast to undeformed samples, the side faces of deformed lamellae were not any longer smooth and a large number of screw dislocations with low Burgers vectors crossing the lamellae thickness could be distinguished. These observations are in accordance with polymer crystal plasticity theory that relies on the rate controlled nucleation and propagation of screw dislocations across polymer crystals. An existence of numerous screw dislocations arrested in lamellae is a direct proof of action of fine crystallographic slips along the macromolecular chains in PE crystals during plastic deformation. The kinking of lamellae due to plastic deformation was also observed. Large sections of lamellae between kinks rotated towards the plane of compression while the chain stems in lamellae rotated in the opposite direction, away from the compression direction, which is a signature of the fine crystallographic slip.Plastically deformed polyethylene crystals are highly defected due to many dislocations incorporated within them - the density of dislocations was approximated as 1016 m−2. However, deformed crystal melting temperature is nearly unaffected while the heat of melting is slightly reduced, yet only in thin crystals. It suggests that the arrested dislocations contribute more to the surface energy of lamellae basal planes rather than to a bulk energy of polyethylene crystals.  相似文献   

8.
《国际聚合物材料杂志》2012,61(3-4):111-121
Abstract

The fine structure of melt-crystallized shish-kebabs is investigated by means of TEM, SAXS, DSC and RS. In addition to the well known two morphological entities (shish and kebab), a third entity called “transitional zone” has been detected by TEM and two independent SAXS maxima. The transitional zone is characterized by a crystal morphology somewhere in between the shish and kebab crystals and a comparatively high connectivity of molecules along those crystals. In situ SAXS experiments at elevated temperatures reveal the change of the size of this zone with crystallization conditions.  相似文献   

9.
Akira Kaito 《Polymer》2006,47(10):3548-3556
The oriented crystallization of poly[(R)-3-hydroxybutyrate] (PHB) in the miscible blends with poly(vinylidene fluoride) (PVDF) was investigated with various compositions. The PVDF/PHB blend films were prepared by solution casting and subsequent melt-quenching in ice water. Oriented films of the blends were prepared by uniaxially stretching the melt-quenched film at 0 °C in ice water using a hand-operated stretching apparatus. The oriented blend films were heat-treated at a fixed length in order to crystallize PHB in the oriented state. The crystal orientation and the lamellar textures of the obtained samples were studied with wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering (SAXS), respectively. The SAXS measurements showed that a considerable amount of molecular chains of PHB are excluded from the lamellar stacks of PVDF and exist in the interfibrillar regions in the oriented films of the blends. The cold crystallization of PHB in the interfibrillar region results in the orientation of PHB crystals, and the type of crystal orientation depends upon the composition of the blends. For the PVDF/PHB=4/6-7/3 blends, the crystal a-axis of PHB is highly oriented parallel to the drawing direction and the crystal c-axis (molecular chain axis) in PHB crystals is perpendicular to the drawing direction, i.e. orthogonal to the chain axis of the crystals of PVDF. It is considered that the a-axis orientation is induced by the confinement of crystal growth in the interfibrillar nano-domains. For the PVDF/PHB=2/8-3/7 blends, however, the crystal c-axis of PHB is primarily oriented in the drawing direction, suggesting that the stressed molecular chains of PHB are crystallized with the molecular orientation retained.  相似文献   

10.
The melting of a homogeneous ethylene-1-octene copolymer after isothermal crystallization is discussed based on DSC and time-resolved SALS, SAXS and WAXD data. Two melting peaks appear in DSC suggesting the presence of two crystal fractions. All crystals grow in a lamellar habit and there is no evidence for fringed micellar or isolated block-like crystals. The high melting fraction crystallizes while segregating comonomer-rich parts into separate regions where in a later stage the low melting fraction crystallizes. The data support the view of lamellae that grow via the secondary nucleation of crystalline blocks from a preexisting layer-like mesomorphic phase with preservation of the mesomorphic layer thickness. The stability of these blocks increases due to sintering, forming lamellae that melt slightly above the crystallization temperature. The high melting fraction is generated from those lamellae that are able to reduce the crystalline-amorphous interfacial tension.  相似文献   

11.
A study of the nanoscale mechanical properties of isotactic mesomorphic and semi‐crystalline polypropylene (iPP) is presented. Two iPPs produced with metallocene and Ziegler‐Natta catalyst polymerization are used. The resulting fibers are characterized by wide angle X‐ray scattering, small‐angle X‐ray scattering (SAXS), and Raman spectroscopy. The spatial variability of the percentage crystallinity is evaluated based on the SAXS data. AFM indentation is performed to measure the elastic modulus of the fibers in the direction perpendicular and parallel to the fiber axis. Since the AFM probing is performed on a scale larger than the lamellar thickness, a statistical analysis of the AFM and SAXS data is necessary to infer the elastic moduli of the α crystals and of the inter‐lamellar regions. The elastic modulus of the crystalline lamellae in the direction perpendicular to the c‐axis of the α crystal probed in compression is estimated at approximately 3.3 GPa, while the effective modulus of the interlamellar regions ranges from 1.5 to 2.2 GPa. The method proposed can be applied to other material systems with similar layered structure to measure elastic moduli or hardness on length scales smaller than the resolution of the indentation test. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43649.  相似文献   

12.
This paper aims to investigate the influence of the mold temperature on the mechanical responses at different ambient temperature and molecular structure of the injection molded TPU sheets. The tensile properties of the TPU sheets prepared at different mold temperatures were obtained at different ambient temperatures. As the mold temperature increases, both the elongation at break and tensile strength of the specimens increase. The specimens show yield behavior during stretching at −30 and −50°C. The microstructure of the TPU sheets was characterized by DMA, AFM, and birefringence. The results show that the higher mold temperature can reduce the aggregation of hard domains because of the higher mobility of the hard segments. In-situ SAXS and WAXS measurements were carried out at −30°C test temperature to exhibit the evolution of the microstructure during stretching. When the specimens are prepared at 40°C mold temperature, the hard domains are destroyed and difficult to orient along the stretching direction. In contrast, the hard domains begin to be deformed and oriented along the stretching direction above the yield strain when the specimens molded at higher mold temperature. The above microstructure evolution is consistent with the tensile behavior of the TPU specimens.  相似文献   

13.
In order to better understand the effect of small amount of both high-molecular-weight polyethylene (HMWPE) and low-molecular-weight polyethylene (LMWPE) on the mechanical properties and crystal morphology under the shear stress field, the dynamic packing injection molding (DPIM) was used to prepare the oriented pure polyethylene samples and its blends ones with different contents of HMWPE and LMWPE. The experiment substantiated that the further improvement of tensile strength and impact stength along the flow direction (MD) of HDPE/HMWPE/LMWPE samples was achieved, while the tensile strength along the transverse direction (TD) still substantially exceeded that of conventional molding. When the contents of HMWPE and LMWPE were respectively 8% in blends, the tensile strength in both flow and transverse directions of the samples were highly enhanced, with improvements from 27.75 MPa to 115.43 MPa (about 316%), in MD and from 23MPa to 32.74 MPa (about 42.34%), in TD; besides the impact strength was improved from 21.55 KJ/m2 to 72.6 KJ/m2 (about 236.89%), in MD but decreased from 17 KJ/m2 to 6.92 KJ/m2 in TD. The obtained samples were characterized via DSC, WAXD and SEM. For HDPE/HMWPE/LMWPE, the shish-kebab structure which is composed of stretched chains (shish) and lamellae (kebab) was seen in the oriented region of DPIM samples and the spherulites existed in the oriented region of SPIM samples. Furthermore, the appropriate amount HMWPE and LMWPE (about 8%, respectively) blended into mixture can improve the thickness and the length of lamellae, and the degree of crystallinity in shear region by DPIM which were approved by DSC and SEM, at the same time, it can also enhance the intensity of orientation of lamellae in shear region confirmed by SEM and WAXD. The reason of improvement of mechanical properties is the existence of these thicker, longer and more orientated lamellae in shear region.  相似文献   

14.
The deformation induced structure evolutions of polyamide 6 (PA6) during uniaxial tension at high tensile temperatures (60 °C and 90°C) were investigated with in situ wide- and small-angle X-ray scattering (WAXS and SAXS) technologies. The obtained data on structure evolutions revealed that they were different from the results measured at low temperature (30 °C). The α-phase got oriented once upon the beginning of deformation. After yielding the γ-phase started to be oriented following the α-phase. While, the breakdown of PA6 crystals along a and c axis overcame partial crystalline orientation at the high tensile temperatures (60 and 90 °C). The competition between stretch of amorphous phase and slippage of lamellae after yielding affected the deformation behavior of PA6. The collapse of lamellae was also confirmed from SAXS analysis and such disrupted lamellar structure resulted in the decrease of long spacing of PA6. The results showed that PA6 materials may show higher ductility at high temperatures. Therefore the crystals could be broken more easily and the formed lamellar fragments of PA6 could be preserved at larger strain at 90 °C. In addition, the yielding of PA6 and γ-phase orientation depended on the lamellar slippage during the deformation. POLYM. ENG. SCI., 60:581–586, 2020. © 2019 Society of Plastics Engineers  相似文献   

15.
Poly(ethylene 2,5‐furandicarboxylate) (PEF) is an emerging bio‐based polymer with interesting thermal and barrier properties. In this study, the melting behavior of PEF was investigated in situ by means of simultaneous wide and small angle X‐ray scattering (WAXS and SAXS) measurements coupled with DSC measurements. This study gives the first evidence of what happens from a structural point of view during the multiple melting behavior of PEF, which is composed of three distinct events, taking into account the nature of the initial crystalline phase present. The first result is that the α′ form, induced at low crystallization temperature, does not undergo any phase transformation upon heating revealing its stable character. Second, the comparison of the SAXS and WAXS results with the DSC ones showed that the multiple melting behavior observed is attributed to a melting–recrystallization–melting process. Third, this work also definitely shows that the low amplitude melting endotherm observed in the DSC thermograms is ascribed to the melting of secondary crystals. Finally, SAXS‐WAXS results led to the conclusion that the secondary crystals cannot be depicted by the commonly accepted lamellar insertion model. Another microstructural representation of these secondary crystals is proposed. In this model, the secondary crystals consist of bundles of macromolecules, which formed small crystalline entities located between the primary crystalline lamellae stacks. POLYM. ENG. SCI., 59:1667–1677 2019. © 2019 Society of Plastics Engineers  相似文献   

16.
Crosslinking of polyolefin elastomer (POE, ENGAGE™ 8480) with Dicumyl Peroxide (DCP) can have effects on its crystallization dynamics, crystal structure, and properties. The POE crosslinked uniformly has significantly lower crystalline ability than the one with only amorphous phase crosslinked, which, in turn, has weaker crystalline ability than neat POE. The crystallinity and melting point depend on how the POE is crosslinked. The neat POE and POE crosslinked in amorphous phase only, are investigated with DSC and in-situ tensile/synchrotron radiation (WAXD/SAXS). In situ tensile/synchrotron X-ray during a uniaxial stretching process indicates that severe crystal fragmentation is observed at a strain around 45%, and with further increase in strain. The stress in the crosslinked POE is significantly larger than neat POE. For both samples, crystal orientation increases sharply within the strain range up to 88% where orientation-induced new crystals aligned in stretching direction are observed. The long period increases more in stretching direction for the crosslinked POE, consistent with larger stress in this sample, and the stress difference is more pronounced at large strains (27.3 vs. 10.9 MPa at a strain 435%). Permanent set of the crosslinked POE is smaller, consistent with less oriented crystals observed after the test for permanent set.  相似文献   

17.
The structure of blown films of blends of low‐density polyethylene (PE‐LD) and isotactic polybutene‐1 (iPB‐1) with different content of iPB‐1 was investigated using wide‐ and small‐angle X‐ray scattering (WAXS and SAXS), transmission electron microscopy (TEM), and polarizing optical microscopy (POM). TEM proves formation of a matrix–particle phase structure due to immiscibility of the blend components. Within the iPB‐1 particles, needle‐like crystals with c‐axis orientation were observed. The PE‐LD matrix showed two populations of crystals. WAXS data indicate that the majority of crystals were oriented with the c‐axis perpendicular to machine direction (MD), while SAXS data prove additional presence of stacks of lamellae, oriented parallel to MD. Quantitative birefringence measurements showed that the majority of molecule segments were oriented in the direction of the circumference of the film, confirming the WAXS data. The crystal orientation has direct impact on mechanical properties, which was demonstrated by measurement of the anisotropy of the modulus of elasticity. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
Four kinds of polypropylene (PP) cast films with different die draw ratios (DDR) were prepared. The impact of different DDR on the crystalline and oriented properties of PP cast films and annealed films was explored herein. Wide angle X-ray diffraction (WAXD) and fourier transform infrared (FTIR) methods were adopted to examine the orientation degree of crystalline and amorphous phases. Long period distance (Lp) of the crystalline structure was tested by small angle X-ray scattering (SAXS). Crystallization was determined by differential scanning calorimeter (DSC). The oriented and crystalline behaviors of the samples were carried out by the elastic recovery (ER) testing. Then, samples after being annealed were examined by the same methods. The influence of annealing process on the films’ structures and properties was explored. Besides, the final stretched microporous membranes manufactured via stretching the annealed films along machine direction were examined by scanning electronic microscope (SEM). No matter for cast films or for annealed films, it is found that the films’ orientation degree of crystalline and amorphous phases, as well as Lp and crystallinity are larger at higher DDR and relatively lower at lower DDR. When the DDR is overly high (DDR?=?170), both the oriented and crystalline properties will decline. Elastic recovery testing indicates that a film with better orientation of the crystalline and the amorphous phases as well as with higher crystallinity can be obtained at an appropriate DDR. SEM images show that stretched membranes with better microporous structure can be obtained when the precursor film is prepared at a proper DDR.  相似文献   

19.
Temperature modulated differential scanning calorimetry (TMDSC), variable heating rate DSC, and tapping atomic force microscopy (AFM) were used to study semi-crystalline liquid crystalline polymers (LCPs). Main chain LCPs included a random copolyester (Vectra® A950) and an azomethine alternating copolymer. For the azomethine LCP the TMDSC non-reversing signal detected broad exothermic transitions associated with melting and recrystallization as the slow DSC heating scan induced surprisingly large morphological changes. Non-isothermally crystallized Vectra® and some isothermally crystallized samples at lower temperatures exhibited different levels of DSC scan induced crystal reorganization. Such crystal metastability was also studied by variable heating rate DSC and an independent technique for estimating the melting point at very rapid heating rates. The TMDSC characterization of the scan induced crystal perfection in Vectra® was substantially different than for the other polymers studied. In most cases even though crystal perfection was occurring, no clear exotherm was detected in the non-reversing signal. High temperature annealing for long times resulted in degrees of crystal perfection which could be studied by DSC with minimal scan induced reorganization. High resolution tapping AFM was used to elucidate details of crystal morphology for mechanically oriented and non-oriented Vectra® before and after annealing. Structures resembling lamellae were found to be oriented perpendicular to the chain direction in the oriented Vectra®. In the non-oriented film broad and sometimes curved ‘lamellae’ were detected. They were about 1000 nm long and between 20 and 35 nm wide, with the width increasing slightly as a function of increased annealing time at 260 °C melt crystallization conditions. Substructure of the lamellae in both oriented and non-oriented Vectra® consisted of smaller stacked crystallites which are detected by AFM studies of these surfaces.  相似文献   

20.
Ultra-high molecular weight polyethylene films prepared by melt flow crystallization under torsional flow conditions were characterized by wide angle (WAXS) and small angle (SAXS) diffraction techniques and scanning electron microscopy (SEM). The films had a fibrillar morphology in which lamellae having an average fold period of 650Å were stacked with their c-axis along the circular flow lines. X-ray analysis showed that the a and b-axes were preferentially oriented along the thickness and radial directions of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号