首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This study reports the glass transition temperature (Tg), and sorption and diffusion of subcritical CO2 gas in polymethyl methacrylate (PMMA) nanocomposites containing organically modified smectite clay, Cloisite 20A (C20A). A range of methods for preparing the PMMA‐clay nanocomposites was investigated and a solution coprecipitation method was selected as the most appropriate. Using this method, PMMA nanocomposite containing 2, 4, 6, and 10 wt% nanoclay loadings were prepared. Wide‐angle X‐ray diffraction (XRD) analysis and scanning electron microscopy (SEM) indicated that the 2 wt% nanocomposite materials had a well‐dispersed intercalated clay structure. The Tg for PMMA‐C20A nanocomposites, as measured by differential scanning calorimetry (DSC), was found to be independent of the clay loading. CO2 solubility studies from 0 to 65°C and pressures up to 5.5 MPa using an in situ gravimetric technique were performed on compression‐molded films. The organoclay was found to have no effect on the solubility of CO2 in PMMA, and therefore the solubility of CO2 in the nanocomposite can be determined from the solubility of CO2 in the matrix polymer alone. Diffusion coefficients were determined using the appropriate transport models for these test conditions and the diffusion coefficients for CO2 in PMMA‐C20A composites were found to increase with organoclay loading. It is believed that the processing path taken to prepare the nanocomposites may have resulted in the agglomeration of the C20A organoclay, thereby preventing the polymer chains from fully wetting and intercalating a large number of clay particles. These agglomerations are responsible for the formation of large‐scale holes within the glassy nanocomposite, which behave as low resistance pathways for gas transport within the PMMA matrix. POLYM. ENG. SCI., 45:904–914, 2005. © 2005 Society of Plastics Engineers  相似文献   

2.
Poly(methyl methacrylate) (PMMA)‐cellulose nanofibers nanocomposite were prepared by an immersion precipitation method using various nanofiber contents. Solvent exchange was used to disperse the cellulose nanofibers in dimethylacetamide (DMAc) so that they could be easily mixed with PMMA solution. Atomic force microscopy images show that the thickness of the nanofibers dispersed in DMAc is around 2–3 nm. The nanocomposites obtained were translucent. The thermogravimetric and differential scanning calorimetry analyses show that with increasing cellulose nanofiber content the thermal stability and the glass transition temperature (Tg) of polymer matrix shift to higher temperature. The tensile modulus and strength increased with increasing nanofiber content. Dynamic mechanical analysis profiles show that the presence of cellulose nanofibers affects the storage modulus of PMMA nanocomposites over the whole range of temperatures studied. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Polyether block amide (PEBA) elastomer‐organoclay nanocomposites were prepared by a melt mixing technique. The X‐ray diffraction and transmission electron microscope analysis indicated that the nanocomposite formed a partially exfoliated nanostructure in which the organoclay was dispersed uniformly throughout the matrix at the nanometer scale. The effect of organoclay on the melting temperature (Tm), glass transition temperature (Tg), crystallization temperature (Tc), and heat of fusion (ΔHm) of the PEBA was determined by differential scanning calorimetry. Enhanced mechanical properties of the nanocomposites were observed from tensile and dynamic mechanical analysis. Thermal gravimetric analysis showed that the clay nanoparticles caused an increase in the thermal stability of the PEBA. Measurement of oxygen permeability and the degree of swelling in ASTM #3 oil indicated that the gas barrier properties and solvent resistance were greatly improved by the clay nanoparticles. Melt rheological studies revealed that the nanocomposites exhibited strong shear thinning behavior and a percolated network of the clay particles was formed. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

4.
In this study, the effects of functionalization and weight fraction of mutliwalled carbon nanotubes (CNTs) were investigated on mechanical and thermomechanical properties of CNT/Epoxy composite. Epoxy resin was used as matrix material with pristine‐, COOH‐, and NH2‐functionalized CNTs as reinforcements in weight fractions of 0.1, 0.5, and 1.0%. Varying (increasing) the weight fraction and changing type (pristine or functionalized) of CNTs caused increment in Young's modulus and tensile strength as observed during mechanical tests. CNT reinforcement improved thermal stability of the nanocomposites as observed by thermogravimetric analysis. Thermomechanical analysis showed a slight reduction in free volume of the polymer, that is a drop in coefficient of thermal expansion, prior to glass transition temperature (Tg) beside a slight increase in Tg value. Dynamic mechanical analysis indicated an increase in storage modulus and Tg owing to the strength addition of CNT to the matrix alongside the hardener. Scanning electron microscopy analysis of the fractured surface(s) revealed that CNTs were well dispersed with no agglomeration and resulted in reinforcing the matrix. POLYM. COMPOS., 36:1891–1898, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
The effect of CNFs on hard and soft segments of TPU matrix was evaluated using Fourier transform infrared (FTIR) spectroscope. The dispersion and distribution of the CNFs in the TPU matrix were investigated through wide angle X‐ray diffraction (WAXD), field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), polarizing optical microscope (POM), and atomic force microscope (AFM). The thermogravimetric analysis (TGA) showed that the inclusion of CNF improved the thermal stability of virgin TPU. The glass transition temperature (Tg), crystallization, and melting behaviors of the TPU matrix in the presence of dispersed CNF were observed by differential scanning calorimetry (DSC). The dynamic viscoelastic behavior of the nanocomposites was studied by dynamical mechanical thermal analysis (DMTA) and substantial improvement in storage modulus (E') was achieved with the addition of CNF to TPU matrix. The rheological behavior of TPU nanocomposites were tested by rubber processing analyzer (RPA) in dynamic frequency sweep and the storage modulus (G') of the nanocomposites was enhanced with increase in CNF loading. The dielectric properties of the nanocomposites exhibited significant improvement with incorporation of CNF. The TPU matrix exhibits remarkable improvement of mechanical properties with addition of CNF. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
In this study, carboxylic acid functionalized carbon nanotubes (CNTs) were used to modify epoxy with intent to develop a nanocomposite matrix for hybrid multiscale composites combining benefits of nanoscale reinforcement with well‐established fibrous composites. CNTs were dispersed in epoxy by using high energy sonication, followed by the fabrication of epoxy/CNTs composites. The processibility of CNTs/epoxy systems was explored with respect to their dispersion state and viscosity. The dependences of viscosity, mechanical and thermomechanical properties of nanocomposite system on CNTs content were investigated. The dispersion quality and reagglomeration behavior of CNTs in epoxy and the capillary infiltration of continuous fiber with the epoxy/CNTs dispersion were characterized using optical microscope and capillary experiment. As compared with neat epoxy sample, the CNTs nanocomposites exhibit flexural strength of 126.5 MPa for 1 wt% CNTs content and impact strength of 28.9 kJ m?2 for 0.1 wt% CNTs content, respectively. A CNTs loading of 0.1 wt% significantly improved the glass transition temperatures, Tg, of the nanocomposites. Scanning electron microscopy (SEM) was used to examine the fracture surface of the failed specimens. It is demonstrated that the properties of CNTs/epoxy system are dispersion‐dominated and interface sensitive. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

7.
Epoxy‐based nanocomposites with 2, 5, and 7 wt% of montmorillonite (MMT) nanoclay were prepared using high shear melt mixing technique. The microstructural features of the nanocomposites were investigated by transmission electron microscopy (TEM). The thermal and mechanical properties were measured using differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). Further, the effect of voltage, temperature, seawater aging on the electrical conductivity (σDC) of the nanocomposites was also measured. To understand the free volume behavior upon filler loading, and to observe the connectivity between microstructure and other properties, positron annihilation lifetime spectroscopy was used. The TEM results revealed that MMT nanoparticles were uniformly dispersed in the epoxy matrix. Experimental results showed that the inclusion of 2 wt% MMT nanofiller increased the Tg, electrical conductivity, thermal stability, modulus, free volume of the epoxy nanocomposite significantly. This is well explained from the results of Tg (DSC and DMA), thermal stability, TGA residue, free volume analysis, and electrical conductivity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
The Core‐shell hybrid particles with attapulgite (ATP) as the core and polymethylmethacrylate (PMMA) as the shell (ATP‐g‐PMMA) were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization method. The diameter of ATP‐g‐PMMA was increased to 50–60 nm, and the surface hygroscopicity was decreased observably after surface grafting. Then, ATP‐g‐PMMA hybrid particles were filled into the polycarbonate (PC) by melt mixing to afford nanocomposites, and the mechanical properties, microstructures, thermal stability, and rheological behavior of nanocomposites were investigated by varying ATP‐g‐PMMA concentration in the range 1, 3, 5, and 7 wt % in PC. Fourier Transform infrared spectroscopy (FTIR) suggested that there is no esterification reaction between particles and matrix. Slight changes in tensile strength, and noticeable decrease of elongation and impact strength were observed with the increase in ATP‐g‐PMMA particles loading. The morphology evaluated by field‐emission scanning electron microscopy (FESEM) indicated that ATP‐g‐PMMA was dispersed with a diameter range of 80–100 nm, and phase separation was appeared with increasing ATP‐g‐PMMA loadings. Thermogravimetric analysis (TGA) results revealed the thermal stability of composites was strengthened. The disentanglement and interface slip induced by preferred orientation and directional arrangement of ATP‐g‐PMMA resulted in lower complex viscosity (η*) and higher loss factor (tan δ) compared with the pristine PC. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42262.  相似文献   

9.
Four‐armed star poly(l ‐ lactide)‐grafted multiwalled carbon nanotubes (CNTs‐g‐4PLLA) were synthesized through the nucleophilic substitution reaction between 4PLLA and acryl chloride of CNTs and then characterized by transmission electron microscope, X‐ray photoelectron spectroscopy, thermal gravimetric analysis (TGA), and ultraviolet visible spectrophotometer. The results indicated that 4PLLA was successfully grafted onto CNTs, and CNTs‐g‐4PLLA contained 37.7 wt% of 4PLLA. PLLA/CNTs‐g‐4PLLA nanocomposites were prepared by solution casting with different CNTs‐g‐4PLLA content. Rheological behavior of PLLA/CNTs‐g‐4PLLA nanocomposites was measured using a rheometer. The result showed that CNTs‐g‐4PLLA formed a network structure at percolation concentration, which improves obviously rheological properties of PLLA in the molten state. The crystallization behavior and crystal structure of the nanocomposites were comprehensive evaluated through differential scanning calorimetry, X‐ray diffraction, and polarizing optical microscope. The results found that CNTs‐g‐4PLLA played two roles in PLLA crystallization. The addition of CNTs‐g‐4PLLA acted as nucleating agent and obviously accelerated the spherulites growth under percolation concentration, while it inhibited the movement of PLLA chains at above percolation concentration, resulting in the decrease of crystallinity. Thermal stability and mechanical properties of the nanocomposites were also investigated using TGA, dynamic mechanical analysis, and tensile test. These results indicated that the incorporation of CNT‐g‐4PLLA into the PLLA matrix improved the thermal stability, storage modulus, and tensile strength of the nanocomposites. POLYM. COMPOS., 37:2744–2755, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.
A systematic research has been conducted to investigate the matrix properties by introducing nanosize TiO2 (5 nm, 2.0–30% by weight) filler into a poly (methyl methacrylate) (PMMA) resin. A twin screw extraction process was developed to disperse the particles into the PMMA. The thermal, mechanical, and viscoelastic properties of the virgin PMMA and nanoTiO2‐PMMA composite were measured. The nanofiller infusion improves the thermal, mechanical and viscoelastic properties of the PMMA. Nanocomposite shows increase in storage modulus (~ 60%), rubbery modulus (~ 210%), glass transition temperature (~ 27%), crosslink density (~ 213%), initial decomposition temperature (~ 83% at 1% wt. loss), and activation energy (~ 141%). Mechanical performance and thermal stability of the nanoTiO2‐PMMA composites are depending on the dispersion state of the TiO2 in the PMMA matrix. Scanning electron microscopic study shows that the particles are well dispersed in the PMMA matrix. They are correlated with loading. Kinetics for thermal degradation analysis was studies. The integral procedural decomposition temperature (IPDT) is enhanced (~ 117%). The nanocomposites of high activation energy possess high thermal stability. Interrelation of Tg, crosslink density, IPDT, storage modulus, activation energy, and TiO2 weight percent are established. Various reasons for these effects in terms of reinforcing mechanisms have been discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Modification is mostly used to adjust and increase the performance of polymers by employing organic or inorganic fillers in composites. It is significant to investigate the functions of different fillers in polymer matrix. In this work, we prepared a series of composites by using polyurethane/acrylic dispersions as polymer matrix and nanofillers (cellulose nanocrystals, carbon nanotubes and aluminum oxide nanoparticles) as modifiers to study their micro-structure and applied performance. It is found that the different nanofillers can be dispersed in PUA homogenously, which are inclusive physically. Different nanofillers have a noticeable influence on the Tg for the acrylate copolymers and the Tg of the interphase between the acrylate and polyurethane. The CNTs significantly increases the elongation to 127.29%, and gives the highest dielectric response. We imply that the CNTs may be the most significant fillers to increase the mechanical and electrical properties.  相似文献   

12.
A series of poly(methyl methacrylate) (PMMA)/octavinyl polyhedral oligomeric silsesquioxane (POSS) blends were prepared by the solution‐blending method and characterized with Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. The glass‐transition temperature (Tg) of the PMMA–POSS blends showed a tendency of first increasing and then decreasing with an increase in the POSS content. The maximum Tg reached 137.2°C when 0.84 mol % POSS was blended into the hybrid system, which was 28.2°C higher than that of the mother PMMA. The X‐ray diffraction patterns, transmission electron microscopy micrographs, and Fourier transform infrared spectra were employed to investigate the structure–property relationship of these hybrid nanocomposites and the Tg enhancement mechanism. The results showed that at a relatively low POSS content, POSS as an inert diluent decreased the interaction between the dipolar carbonyl groups of the homopolymer molecular chains. However, a new stronger dipole–dipole interaction between the POSS and the carbonyl of PMMA species formed at the same time, and a hindrance effect of nanosize POSS on the motion of the PMMA molecular chain may have played the main role in the Tg increase of the hybrid nanocomposites. At relatively high POSS concentrations, the strong dipole–dipole interactions that formed between the POSS and carbonyl groups of the PMMA gradually decreased because of the strong aggregation of POSS. This may be the main reason for the resultant Tg decrease in these hybrid nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Well-defined poly(methyl methacrylate)-silica nanocomposites were produced by “grafting through” using reversible addition-fragmentation chain transfer (RAFT) polymerization. The surface of silica nanoparticle was modified covalently by attaching methacryl group to the surface using 3-methacryloxypropyldimethylchlorosilane. Polymerization of methyl methacrylate (MMA) using the 4-cyano-4-(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid RAFT agent, produced the PMMA-SiO2 nanocomposites. Characterization of these well-defined nanocomposites included FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), transmission electron microscopy (TEM) and dynamic mechanical analysis. These results show that the Tg values are higher and the mechanical strength of the PMMA-SiO2 nanocomposites is slightly improved when compared to bulk PMMA. Further, the molecular weight of the PMMA (up to Mn = 100,000) is controlled and the SiO2 are well dispersed in the PMMA matrix.  相似文献   

14.
Layer-aligned poly(vinyl alcohol)/graphene nanocomposites in the form of films are prepared by reducing graphite oxide in the polymer matrix in a simple solution processing. X-ray diffractions, scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis are used to study the structure and properties of these nanocomposites. The results indicate that graphene is dispersed on a molecular scale and aligned in the poly(vinyl alcohol) (PVA) matrix and there exists strong interfacial interactions between both components mainly by hydrogen bonding, which are responsible for the change of the structures and properties of the PVA/graphene nanocomposites such as the increase in Tg and the decrease in the level of crystallization.  相似文献   

15.
Poly(methyl methacrylate)/silica (PMMA/SiOx) nanocomposites were synthesized via sol–gel method and studied by various techniques. The dispersion of the silica particles (10–100 nm) in the matrix was probed by transmission electron microscopy (TEM), while solid‐state NMR and Raman spectroscopy detected the formation of an inorganic network with high degree of crosslinking. To elucidate the impact of the filler on the molecular dynamics of the PMMA, different methods were used; namely differential scanning calorimetry, thermally stimulated depolarization current and broadband dielectric relaxation spectroscopy. All three methods observed a significant impact of the nanoparticles on the segmental dynamics of the matrix, which was expressed as an increase of the glass transition temperature (Tg) in terms of calorimetry and as a shift of the α (segmental) relaxation to lower frequencies in terms of dielectric spectroscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
BACKGROUND: Poly(methyl methacrylate) (PMMA)–organoclay nanocomposites with octadecylammonium ion‐modified montmorillonite, prepared via melt processing, over a wide range of filler loading (2–16 wt%) were investigated in detail. These hybrids were characterized for their dispersion structure, and thermal and mechanical properties, such as tensile modulus (E), break stress (σbrk), percent break strain (εbrk) and ductility (J), using wide‐angle X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and tensile and impact tests. RESULTS: Intercalated nanocomposites were formed even in the presence of 16 wt% clay (high loading) in PMMA matrix. PMMA intercalated into the galleries of the organically modified clay, with a change in d‐spacing in the range 11–16 Å. TGA results showed improved thermal stability of the nanocomposites. The glass transition temperature (Tg) of the nanocomposites, from DSC measurements, was 2–3 °C higher than that of PMMA. The ultimate tensile strength and impact strength decreased with increasing clay fraction. Tensile modulus for the nanocomposites increased by a significant amount (113%) at the highest level of clay fraction (16 wt%) studied. CONCLUSION: We show for the first time the formation of intercalated PMMA nanocomposites with alkylammonium‐modified clays at high clay loadings (>15 wt%). Tensile modulus increases linearly with clay fraction, and the enhancement in modulus is significant. A linear correlation between tensile strength and strain‐at‐break is shown. Thermal properties are not affected appreciably. Organoclay can be dispersed well even at high clay fractions to form nanocomposites with superior bulk properties of practical interest. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
Novel organoclays were synthesized by several kinds of phosphonium cations to improve the dispersibility in matrix resin of composites and accelerate the curing of matrix resin. The possibility of the application for epoxy/clay nanocomposites and the thermal, mechanical, and adhesive properties were investigated. Furthermore, the structures and morphologies of the epoxy/clay nanocomposites were evaluated by transmission electron microscopy. Consequently, the corporation of organoclays with different types of phosphonium cations into the epoxy matrix led to different morphologies of the organoclay particles, and then the distribution changes of silicate layers in the epoxy resin influenced the physical properties of the nanocomposites. When high‐reactive phosphonium cations with epoxy groups were adopted, the clay particles were well exfoliated and dispersed. The epoxy/clay nanocomposite realized the high glass‐transition temperature (Tg) and low coefficient of thermal expansion (CTE) in comparison with those of neat epoxy resin. On the other hand, in the case of low‐reactive phoshonium cations, the dispersion states of clay particles were intercalated but not exfoliated. The intercalated clay did not influence the Tg and CTE of the nanocomposite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
A series of poly(methyl methacrylate) (PMMA) nanocomposites were synthesized using free radical polymerization in bulk, by addition of 1 vol% of oxide nanoparticles (silica, alumina, and titania), differing in the nature and type. The influence of nanofiller presence on the kinetics of methyl methacrylate (MMA) free radical polymerization was investigated. For this purpose, the kinetic model that includes the contribution from the first‐order reaction and the autoacceleration was applied on data obtained following the isothermal polymerization at 70°C by differential scanning calorimetry (DSC). The effect of the size and the surface nature of nanofillers on the interfacial layer thickness (d), as well as the influence of d on the glass transition temperature (Tg) of PMMA hybrid materials was studied. It was found that hydrophilic particles accelerated the initiator decomposition and affected the monomer polymerization on the surface, which caused the formation of thicker interfacial layer compared to the one around hydrophobic fillers. The addition of smaller nanoparticles size decreased the glass transition temperature of pure poly(methyl metacrylate). The linear increase of PMMA Tg value with increasing the polymeric interfacial layer was determined. The Tg values of pure PMMA and PMMA nanocomposite with d of 1.4 nm were estimated to be the same. POLYM. COMPOS. 34:1342–1348, 2013. © 2013 Society of Plastics Engineers  相似文献   

19.
To facilitate the dispersion of single‐walled carbon nanotubes (SWCNT) into poly(methyl methacrylate) (PMMA), SWCNT were functionalized with a RAFT chain transfer agent, and PMMA was grafted from the SWCNT by reversible addition–fragmentation transfer (RAFT) polymerization to give SWCNT‐g‐PMMA containing 6 wt % PMMA. SWCNT‐g‐PMMA in the form of small bundles was dispersed into PMMA matrices. The SWCNT‐g‐PMMA filler increased the glass transition temperature (Tg) of the composite when the matrix molecular weight Mn was less than the graft molecular weight, but not when the matrix Mn was equal to or greater than the graft Mn. The threshold of electrical conductivity of the composites as a function of weight percent SWCNT increased from 0.2% when matrix Mn was less than graft Mn to about 1% when matrix Mn was greater than graft Mn. Dynamic mechanical analyses of the composites having graft Mn less than or equal to matrix Mn showed broader rubbery plateaus with increased SWCNT content but no significant differences between samples with different grafted PMMAs. The results indicate that lower Mn matrix wets the SWCNT‐g‐PMMA whereas higher Mn matrix does not wet the SWCNT‐g‐PMMA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39884.  相似文献   

20.
ABSTRACT

Conjugated polymer/graphite nanocomposites have been known as high performance materials owing to improve the physicochemical properties relative to conventional once. Multilayered polymer nanocomposites based on polypyrrole (PPy), polyvinylchloride (PVC) as matrices and p-phenylene diamine (PDA) as linker were prepared via chemical in situ polymerization process and subsequently investigated the physical characteristics of fabricated nanocomposites at various loadings. The structural characterization and morphology of prepared nanocomposites were inspected by Fourier transform infrared spectroscopy (FTIR), X-ray photon spectroscopy (XPS), energy dispersive X-ray spectroscope (EDX), field emission scanning electron microscope (FESEM), respectively. The composite III showed higher thermal stability at 10 wt% loading of PPy. According to differential scanning calorimetry (DSC), the glass transition temperature (Tg), melting temperature Tm, and crystallization temperature (Tc) of nanocomposites increases with PPy loading (2–10 wt%) owing to crosslinking and chain rigidity. Moreover, higher surface area was displayed by the multilayered PPy/PVC/PDA@FG nanocomposites. Remarkably, electrical conductivity of ultimate nanocomposites was also found to be a function of PPy loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号