首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the interfacial effect on properties of epoxyacrylate–silica composites, submicron‐sized silica spheres were synthesized by sol–gel reaction under a basic environment and their surfaces were endowed with vinyl functional groups by further modification with 3‐methacryloxypropyl trimethoxy silane. The pure silica (PS) and the modified silica (MPS) spheres were characterized by Fourier transform infrared, 29Si‐ and 13C‐nuclear magnetic resonance (NMR), scanning electron microscope (SEM), and particle size analyzer. The silica spheres were then added to the presynthesized difunctional epoxyacrylate resin with one vinyl group and one epoxide group at each end, in addition to the photo‐ and thermo‐curing agents. After cure, thermal and mechanical properties of the obtained epoxyacrylate–silica composites were measured and compared. Tensile mechanical properties including initial modulus, ultimate tensile strength, and elongation at break, as well as the fracture energy of the epoxyacrylate–silica composite were all increased by increasing the content of silica spheres. Moreover, the composites filled with MPS had stronger interfacial strength between silica sphere and matrix than those with PS and thus exhibited an additional increase of tensile mechanical properties and fracture toughness. The increase of fracture toughness was owing to the crack deflection and particle–matrix debonding as evidenced by SEM pictures on the fracture surface. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
A comprehensive study of toughening unsaturated polyster and vinyl ester resins by addition of liquid rubbers was carried out by considering the effects of cure temperature and gel time on final resin/rubber morphology. The objective was to produce a dispersed rubber phase consisting of particles less than 15 μm in diameter with the addition of limited amounts of rubber, so as not to seriously reduce the modulus and strength of the base resin. A variety of liquid rubbers was used including those based on poly(butadiene acrylonitrile), poly(epichlorohydrin), and two poly(acrylates). Fracture toughness of unmodified and rubber modified materials was measured using the compact tension (CT) test geometry. Significant improvements in fracture toughness were achieved with little to no change in Young's modulus or glass transition temperature. With modest rubber additions, the fracture toughness increased up to 62% for the polyester resin and up to 116% for the vinyl ester resin. In general, fracture toughness increases with increases in volume fraction of rubbery second-phase particles. However, results suggest that two-phase particles may be more effective tougheners than single-phase particles. The toughening mechanism appears to depend on the type of rubbery particle morphology present.  相似文献   

3.
Herein, the fracture toughness of ternary epoxy systems containing nanosilica and hollow glass microspheres (HGMS) is investigated. The experimental measurements reveal synergistic fracture toughness in some hybrid compositions: The incorporation of 10 phr of HGMS and nanosilica alone modify the fracture toughness of epoxy by 39% and 91%, respectively. However, use of 10 phr hybrid modifier can enhance the fracture toughness of the resin up to 120%. Observations reveal different toughening mechanisms for the blends i.e., plastic deformation for silica nanoparticles and crack bifurcation for HGMS. Both of these toughening mechanisms additively contribute to the synergism in ternary epoxies.  相似文献   

4.
The rigid nano‐silica and soft nano‐rubber toughening effects on neat epoxy under impact loading in a range of ?50 to 80 °C were investigated. Nanosilica particles (20 nm) toughened neat epoxy at all temperatures with a maximum toughening efficiency at ?50 °C and lower efficiency at elevated temperatures. In contrast, except at ?50 °C, nano‐rubber particles (100 nm) showed the deterioration effect on the impact fracture toughness of epoxy resin. Scanning electron microscopy examinations revealed that the crack pinning and local epoxy deformation induced by rigid particles in term of nano‐silica/epoxy and nano‐rubber/epoxy interfacial debonding (at ?50 °C) led to positive toughening efficiency on neat epoxy. However, at 20 and 80 °C, the rubber cavitations/void plastic growth was significantly suppressed under the impact loading, which led to the negative toughening efficiency on epoxy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45319.  相似文献   

5.
Interaction between different toughening mechanisms is studied using a heat treated hybrid system, consisting of carboxyl‐terminated butadiene acrylonitrile (CTBN) rubber and EXPANCEL (expandable hollow microspheres) as modifiers for an epoxy resin. It was found that the fracture toughness of the hybrid system is higher than that of either individually EXPANCEL‐ or CTBN‐modified system for a given content of modifier, although the maximum toughness was not substantially high compared with maxima of single modifier systems. Microscopic examination revealed that damage zone due to CTBN particles ahead of the crack reduces due to the presence of EXPANCEL particles and nevertheless its fracture toughness increased. A possibility was deduced that the cavitation due to CTBN assists with promoting compressive stresses around EXPANCEL particles ahead of the crack tip, resulting in increase in fracture toughness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4470–4475, 2006  相似文献   

6.
Liquid nitrile rubber, hyperbranched polyester, and core/shell rubber particles of various functionality, namely, vinyl, carboxyl, and epoxy, were added up to 20 wt % to a bisphenol‐A‐based vinylester–urethane hybrid (VEUH) resin to improve its toughness. The toughness was characterized by the fracture toughness (Kc) and energy (Gc) determined on compact tensile (CT) specimens at ambient temperature. Toughness improvement in VEUH was mostly achieved when the modifiers reacted with the secondary hydroxyl groups of the bismethacryloxy vinyl ester resin and with the isocyanate of the polyisocyanate compound, instead of participating in the free‐radical crosslinking via styrene copolymerization. Thus, incorporation of carboxyl‐terminated liquid nitrile rubber (CTBN) yielded the highest toughness upgrade with at least a 20 wt % modifier content. It was, however, accompanied by a reduction in both the stiffness and glass transition temperature (Tg) of the VEUH resin. Albeit functionalized (epoxy and vinyl, respectively) hyperbranched polymers were less efficient toughness modifiers than was CTBN, they showed no adverse effect on the stiffness and Tg. Use of core/shell modifiers did not result in toughness improvement. The above changes in the toughness response were traced to the morphology assessed by dynamic mechanical thermal analysis (DMTA) and fractographic inspection of the fracture surface of broken CT specimens. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 672–680, 2002; DOI 10.1002/app.10392  相似文献   

7.
Poly(ether sulfone) (PES)‐toughened epoxy clay ternary nanocomposites were prepared by melt blending of PES with diglycidyl ether of bisphenol A epoxy resin along with Cloisite 30B followed by curing with 4,4′‐diaminodiphenylsulfone. The effect of organoclay and thermoplastic on the fracture toughness, permeability, viscoelasticity and thermomechanical properties of the epoxy system was investigated. A significant improvement in fracture toughness and modulus with reduced coefficient of thermal expansion (CTE) and gas permeability were observed with the addition of thermoplastic and clay to the epoxy system. Scanning electron microscopy of fracture‐failed specimens revealed crack path deflection and ductile fracture without phase separation. Oxygen gas permeability was reduced by 57% and fracture toughness was increased by 66% with the incorporation of 5 phr clay and 5 phr thermoplastic into the epoxy system. Optical transparency was retained even with high clay content. The addition of thermoplastic and organoclay to the epoxy system had a synergic effect on fracture toughness, modulus, CTE and barrier properties. Planetary ball‐milled samples gave exfoliated morphology with better thermomechanical properties compared to ultrasonicated samples with intercalated morphology. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Toughening of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin with liquid carboxyl-terminated butadiene acrylonitrile (CTBN) copolymer has been investigated. For this purpose six blend samples were prepared by mixing DGEBA with different concentrations of CTBN from 0 to 25 phr with an increment of 5 phr. The samples were cured with dicyandiamide curing agent accelerated by Monuron. The reactions between oxirane groups of DGEBA and carboxyl groups of CTBN were followed by Fourier-transform infrared (FTIR) spectroscopy. Tensile, impact, fracture toughness and dynamic mechanical analysis of neat as well as the modified epoxies have been studied to observe the effect of CTBN modification. The tensile strength of the blend systems increased by 26 % when 5 phr CTBN was added, and it remained almost unchanged up to 15 phr of CTBN. The elongation-at-break and Izod notched impact strength increased significantly, whereas tensile modulus decreased gradually upon the addition of CTBN. The maximum toughness of the prepared samples was achieved at optimum concentration of 15 phr of CTBN, whereas the fracture toughness (K IC) remained stable for all blend compositions of more than 10 phr of CTBN. The glass transition temperature (T g) of the epoxy resin significantly increased (11.3 °C) upon the inclusion of 25 phr of CTBN. Fractured surfaces of tensile test samples have been studied by scanning electron microscopic analysis. This latter test showed a two-phase morphology where the rubber particles were distributed in the epoxy resin with a tendency towards co-continuous phase upon the inclusion of 25 phr of CTBN.  相似文献   

9.
The dispersion of filler and interfacial interaction are crucial in determining the properties of rubber composites. Aiming to improve the dispersion and filler–rubber interaction, we introduce rubber graft bearing oniums in a rubber/silica composite. To fulfill this goal, the graft, which is prepared via thio-ene click reaction between 1-methylimidazolium mercaptopropionate (MMP) and the pendent vinyl groups of a solution-polymerized styrene-butadiene rubber (SSBR), is introduced into the silica-filled styrene-butadiene rubber (SBR) composite. The dispersion of silica and interfacial interaction are improved via hydrogen bonding interaction. Moreover, the graft exhibits catalytic effect toward the silanization, which can improve interfacial interaction in the composites with bis [3-(triethoxysilyl) propyl] tetrasulfide. With 2 phr of the graft, the tensile modulus (stress at 300% strain) is increased by 18% and the abrasion loss is decreased by 31%. This study opens a new attempt to improve the filler dispersion and filler–rubber interaction in the composites with onium-bearing polymers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48243.  相似文献   

10.
Direct joining of partially cross‐linked and freshly infiltrated carbon fiber reinforced epoxy resin plates made from HTA/RTM6 is investigated as function of the partial curing degree. Partial cross‐linking maintains a certain chemical reactivity of the thermosetting resin which can be used for bonding to a second, freshly infiltrated resin part. A final curing cycle guarantees complete cross‐linking of the joined component. The bonding behavior and the interface morphology of the joined plates are analyzed by mechanical testing, acoustic emission analysis and microscopy. A significant dependence of the bonding and interfacial properties on the partial curing degree is found. Very low and very high partial curing degrees (below 70% and above 80%) result in low fracture toughness and discontinuous crack propagation. Intermediate curing degrees between 70% and 80% mainly show high fracture toughness, stable crack propagation and a ripple like interface morphology. The latter is created by the surface morphology of the partially cross‐linked plate with the typical peel‐ply imprint and results in a high contact surface and mechanical interlocking. The combination of chemical reactivity and high contact surface seems to be advantageous for the enhanced fracture toughness and the improved failure mode of samples with intermediate partial curing degree. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42159.  相似文献   

11.
In order to find a compatibilizer for epoxy resin/silicone rubber systems, interfacial tension of epoxy resin mixed with modified silicone oils which had the compatible groups to epoxy resin was measured against RTV silicone rubber and silicone oil. From the results, it was found that one of polyether modified silicone oils (EtMPS) had strong interfacial activity. Then using the EtMPS as the compatibilizer, RTV silicone rubber or silicone diamine was filled in epoxy resin. The effects of silicone content of these materials on impact fracture energy and on peel strength were investigated. The impact fracture energy of epoxy resin was increased by the addition of RTV silicone rubber up to two times that of unmodified resin while silicone diamine had almost no effect which might be due to the small molecular weight. T-peel strengths of aluminium plates bonded by epoxy resin filled with RTV silicone rubber and with silicone diamine effectively increased with the increasing of silicone content showing the maximum at 10 ∼ 20 phr. The fracture surfaces after the mechanical tests of these materials were observed by a scanning electron microscope. Many particles of silicone rubber in the size of 1 ∼ 20 μ were observed over the fracture surface.  相似文献   

12.
In order to find a compatibilizer for epoxy resin/silicone rubber systems, interfacial tension of epoxy resin mixed with modified silicone oils which had the compatible groups to epoxy resin was measured against RTV silicone rubber and silicone oil. From the results, it was found that one of polyether modified silicone oils (EtMPS) had strong interfacial activity. Then using the EtMPS as the compatibilizer, RTV silicone rubber or silicone diamine was filled in epoxy resin. The effects of silicone content of these materials on impact fracture energy and on peel strength were investigated. The impact fracture energy of epoxy resin was increased by the addition of RTV silicone rubber up to two times that of unmodified resin while silicone diamine had almost no effect which might be due to the small molecular weight. T-peel strengths of aluminium plates bonded by epoxy resin filled with RTV silicone rubber and with silicone diamine effectively increased with the increasing of silicone content showing the maximum at 10 ~ 20 phr. The fracture surfaces after the mechanical tests of these materials were observed by a scanning electron microscope. Many particles of silicone rubber in the size of 1 ~ 20 μ were observed over the fracture surface.  相似文献   

13.
Poly(butyl acrylate)/poly(vinyl acetate‐co‐methyl methacrylate) PBA/P(VAc‐co‐MMA) core–shell rubber particles with various shell compositions, i.e., VAc/MMA weight ratios, were used to toughen unsaturated polyester. The morphology and surface‐free energy of the rubber particles were determined by transmission electron microscopy (TEM) and contact angle measurements, respectively. The effect of shell structure on the dispersion state of rubber particles inside the unsaturated polyester resin was studied by scanning electron microscopy and TEM. Increasing MMA units in the shell changed the particle dispersion state from small agglomerates or globally well‐dispersed particles to large aggregates in the cured‐resin matrix. For the blends that contain 5 wt% rubber, the highest un‐notched impact toughness, stress‐intensity factor (KIC), and fracture energy (GIC) were observed for the blend containing PVAc shell particles. The results showed that by increasing the particle level from 5 to 10 wt%, the highest KIC and GIC values were obtained for the blend containing rubber particles with VAc/MMA (80/20 wt/wt) copolymer shell. The crack‐tip damage zone in the neat and rubber‐modified unsaturated polyester resins was observed by means of transmission optical microscopy. In addition, using PVAc shell particles exhibited a minimum reduction in the volume shrinkage and tensile properties of the rubber‐modified resin. POLYM. ENG. SCI., 52:1928–1937, 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
Organic–inorganic nanocomposites consisting of co‐poly(vinyl chloride‐vinyl acetate‐vinyl alcohol) and silica were prepared via sol–gel process. Two types of hybrids were prepared, one in which interactions between hydroxyl group present in the copolymer chain and silanol groups of silica network were developed. In the second set, extensive chemical bonding between the phases was achieved through the reaction of hydroxyl groups on the copolymer chains with 3‐isocyanatopropyltriethoxysilane (ICTS). Hydrolysis and condensation of tetraethoxysilane and pendant ethoxy groups on the chain yielded inorganic network structure. Mechanical and thermal behaviors of the hybrid films were studied. Increase in Young's modulus, tensile strength, and toughness was observed up to 2.5 wt % silica content relative to the neat copolymer. The system in which ICTS was employed as binding agent, the tensile strength and toughness of hybrid films increased significantly as compared to the pure copolymer. Thermogravimetric analysis showed that these nanocomposite materials were stable up to 250°C. The glass transition temperature increases up to 2.5 wt % addition of silica in both the systems. Field emission scanning electron microscope results revealed uniform distribution of silica in the copolymer matrix. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
PVC/CaCO3 polymer nanocomposites of differing compositions were produced using a two‐roll mill and compression molding. In all formulations, 0.6 phr of titanate was incorporated to assist dispersion during processing. The morphology was observed using transmission electron microscopy, and the static and dynamic mechanical and fracture properties were determined. Fracture toughness examination was performed according to strain energy release test method. The presence of nanometer‐sized CaCO3 particles led to a slight decrease in the tensile strength but improved the impact energy absorption, storage modulus, and fracture toughness. The use of titanate coupling agent softened the polymer matrix and reduced the matrix's modulus. Fracture surface examinations by scanning electron microscopy showed that the coupling agent improved particle–matrix bonding and inhibited void formation around the particles. Finite element analysis suggested that the improved particle–matrix bonding reduced the matrix's plasticity around the particles, which decreased the toughening efficiency of the composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Natural‐rubber‐based hybrid composites were prepared by the mixture of short cellulose fibers and silica of different relative contents with a 20‐phr filler loading with a laboratory two‐roll mill. The processability and tensile properties of the hybrid composites were analyzed. The tensile modulus improved, but the tensile strength and elongation at break decreased with increasing cellulose fiber content. The scorch safety improved with the addition of 5‐phr cellulose fiber in the composites. The Mooney viscosity significantly decreased with increasing cellulose fiber content. To modify the surface properties of the cellulose fiber and silica fillers, a silane coupling agent [bis(triethoxysilylpropyl)tetrasulfide, or Si69] was used. The effects of Si69 treatment on the processing and tensile properties of the hybrid composites were assessed. We found that the silane treatment of both fillers had significant benefits on the processability but little benefit on the rubber reinforcement. The strength of the treated hybrid composite was comparable to that of silica‐reinforced natural rubber. Furthermore, to investigate the filler surface modification and to determine the mixing effects, infrared spectroscopic and various microscopic techniques, respectively, were used. From these results, we concluded that the fillers were better dispersed in the composites, and the compatibility of the fillers and natural rubber increased with silane treatment. In conclusion, the hybridized use of short cellulose fibers from a renewable resource and silica with Si69 presented in this article offers practical benefits for the production of rubber‐based composites having greater processability and more environmental compatibility than conventional silica‐filler‐reinforced rubber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The interface of a rubber-toughened epoxy resin was modified by using epoxide end-capped carboxyl-terminated butadiene and acrylonitrile random copolymer (CTBN). The end-capping epoxides were formulated with different ratios of flexible diglycidyl ether of propylene glycol (DER732) and rigid diglycidyl ether of bisphenol-A (Epon 828). The microstructure and the fracture behavior of these rubber-modified epoxy resins were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The thermal and mechanical properties were also investigated. With an increase in the amount of end-capping DER732, the interfacial zone of an undeformed rubber particle and the degree of cavitation of the rubber cavity on the fracture surface were greatly increased. At the maximal addition of DER732, fracture energy (GIc) for this toughened epoxy resin containing 10phr CTBN rubber increases up to 2.4 fold compared to that of a conventional CTBN-toughened epoxy resin, but the thermal and the mechanical properties remained quite unaffected. The modification on the interfacial property provides a new technique in the improvement of fracture toughness of a rubber-toughened epoxy resin.  相似文献   

18.
The effect of HP loading on the curing characteristics and mechanical properties of filled SBR and EPDM composites was investigated using bis-(3-triethoxysilylpropyl) tetrasulfide (Si69) as coupling agent. For all composites, 20 phr (part per one hundred parts of rubber) silica was used. The addition of HP enhances the vulcanization process of composites filled with silica. The hybrid reinforcement of HP and silica imparts good stiffness and toughness to filled rubber composites. An excess of HP will tend to form agglomerates in the rubber matrix, which adversely affects the silica-rubber matrix interfacial interaction, and consequently lowers the overall mechanical properties. The HP distribution and filler-rubber matrix interaction, which were analyzed by scanning electron microscopy and equilibrium swelling, explained well the changes in mechanical properties of composites filled with hybrid fillers. Dynamic mechanical analysis indicated that the composites exhibited higher Payne effect and storage modulus, and lower tanδmax value with an increase of HP loading.  相似文献   

19.
Binary and hybrid epoxy nanocomposites modified with graphene oxide (GO) and core–shell rubbers (CSR) were synthesized via the solvent-exchange method. X-ray diffraction analysis and scanning electron microscopy of the samples showed a homogeneous dispersion of GO and CSR in the epoxy matrix. The tensile modulus and tensile strength of the samples modified with CSR decreased continuously with increasing CSR content; however, with the addition of only 0.05 phr GO to the neat epoxy and rubber-modified epoxy, these properties significantly increased. The use of GO and CSR individually improved the fracture toughness, but the impact of GO was greater. The simultaneous use of GO and CSR improved both the fracture toughness and the mechanical properties. Our investigation of the toughening mechanism indicated that crack deflection–bifurcation, crack pinning, and particle debonding–pullout in the presence of GO nanosheets and limited rubber particle cavitation contributed to fracture toughness improvement in the hybrid systems. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46988.  相似文献   

20.
The fracture problem for a brittle matrix reinforced by ductile particles is considered. In the usual manner it is assumed that the crack surface bridging forces provided by the unbroken particles improve the fracture toughness of the matrix. Depending on the relative strength of the interfacial bonding between the matrix and the particles, two particle force models are introduced, namely, a force that is independent of the crack opening displacement (δ) and a force that is a highly non-linear function of δ. The problem is studied for a penny-shaped or plane strain crack in an infinite medium and for a surface crack in a semi-infinite medium under plane strain conditions. The toughness improvement in the matrix is shown to depend on a dimensionless bimaterial constant representing the inherent toughness of the matrix and the yield behavior of the particles. The effective toughness of the composite medium is calculated as a function of the crack size and the bimaterial constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号