首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
Sex-pheromone-related behavior and chemistry were studied in the wasp Spalangia endius Walker (Hymenoptera: Pteromalidae), a pupal parasitoid of the house fly, Musca domestica L. (Diptera: Muscidae). Males responded behaviorally to female extracts by arrestment, whereas females did not arrest to male extracts. In a comparison of male and female extracts by gas chromatography-mass spectrometry (GC-MS), two female-specific compounds were found. One was identified as methyl 6-methylsalicylate (gas chromatographic retention time and mass spectrum versus an authentic standard), but the chemical structure of the second compound is still unknown. Male antennae were sensitive to both compounds in electrophysiological tests (GC-EAD). Males responded behaviorally to methyl 6-methylsalicylate by arrestment, but did not arrest to the second compound. Methyl 6-methylsalicylate has been reported previously from some ant and beetle species, but never from the Pteromalidae. Chemical analysis of the extracts and the male behavioral results are consistent with the hypothesis that methyl 6-methylsalicylate functions as a female-emitted pheromone component at short range, but the exact role of both compounds in intersexual interactions in S. endius remains to be determined.  相似文献   

2.
Macaranga myrmecophytes harbor species-specific Crematogaster ants that defend host trees from herbivores. We examined ant aggressive behaviors when artificially damaged leaf pieces from another tree were offered to four sympatric species of obligate Macaranga myrmecophytes. The ants showed aggressive behavior in response to leaf pieces regardless of the leaf species; however, aggressiveness was higher when conspecific leaf pieces were offered than when nonhost species were offered. Thus, ants can recognize leaf damage and distinguish among damaged leaf species. Chemical analyses of volatile compounds emitted from damaged leaves that may induce ant defense showed that the composition of the minor compounds differed among the four Macaranga species, although there were many compounds in common.  相似文献   

3.
Elicitation of plant defense signaling that results in altered emission of volatile organic compounds (VOCs) offers opportunities for protecting plants against arthropod pests. In this study, we treated potato, Solanum tuberosum L., with the plant defense elicitor cis-jasmone (CJ), which induces the emission of defense VOCs and thus affects the behavior of herbivores. Using chemical analysis, electrophysiological and behavioral assays with the potato-feeding aphid Macrosiphum euphorbiae, we showed that CJ treatment substantially increased the emission of defense VOCs from potatoes compared to no treatment. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of M. euphorbiae showed robust responses to 14 compounds present in induced VOCs, suggesting their behavioral role in potato/aphid interactions. Plants treated with CJ and then challenged with M. euphorbiae were most repellent to alate M. euphorbiae. Principal component analysis (PCA) of VOC collections suggested that (E)-2-hexenal, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), (E)-β-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate (MeSA), CJ, and methyl benzoate (MeBA) were the main VOCs contributing to aphid behavioral responses, and that production of TMTT, (E)-β-farnesene, CJ, and DMNT correlated most strongly with aphid repellency. Our findings confirm that CJ can enhance potato defense against aphids by inducing production of VOCs involved in aphid-induced signalling.  相似文献   

4.
Mutualists and antagonists may place conflicting selection pressures on plant traits. For example, the evolution of floral traits is typically studied in the context of attracting pollinators, but traits may incur fitness costs if they are also attractive to antagonists. Striped cucumber beetles (Acalymma vittatum) feed on cucurbits and are attracted to several volatiles emitted by Cucurbita blossoms. However, the effect of these volatiles on pollinator attraction is unknown. Our goal was to determine whether pollinators were attracted to the same or different floral volatiles as herbivorous cucumber beetles. We tested three volatiles previously found to attract cucumber beetles in a factorial design to determine attraction of squash bees (Peponapis pruinosa), the specialist pollinators of cucurbita species, as well as the specialist herbivore A. vittatum. We found that 1,2,4-trimethoxybenzene was attractive to both the pollinator and the herbivore, indole was attractive only to the herbivore, and (E)-cinnamaldehyde was attractive only to the pollinator. There were no interactions among volatiles on attraction of squash bees or cucumber beetles. Our results suggest that reduced indole emission could benefit plants by reducing herbivore attraction without loss of pollination, and that 1,2,4-trimethoxybenzene might be under conflicting selection pressure from mutualists and antagonists. By examining the attraction of both mutualists and antagonists to Cucurbita floral volatiles, we have demonstrated the potential for some compounds to influence only one type of interaction, while others may affect both interactions and possibly result in tradeoffs. These results shed light on the potential evolution of fragrance in native Cucurbita, and may have consequences for yield in agricultural settings.  相似文献   

5.
Adults of both sexes of the cerambycid beetles Xylotrechus colonus (F.) and Sarosesthes fulminans (F.) were attracted to odors produced by male conspecifics in olfactometer bioassays. Analyses of headspace volatiles from adults revealed that male X. colonus produced a blend of (R)- and (S)-3-hydroxyhexan-2-one and (2 S,3 S)- and (2R,3R)-2,3-hexanediol, whereas male S. fulminans produced (R)-3-hydroxyhexan-2-one and (2 S,3R)-2,3-hexanediol. All of these compounds were absent in the headspace of females. Two field bioassays were conducted to confirm the biological activity of the synthesized pheromones: (1) enantiomerically enriched pheromone components were tested singly and in species-specific blends and (2) four-component mixture of racemic 3-hydroxyhexan-2-one plus racemic 2-hydroxyhexan-3-one and the four-component blend of the stereoisomers of 2,3-hexanediols were tested separately and as a combined eight-component blend. In these experiments, adult male and female X. colonus were captured in greatest numbers in traps baited with the reconstructed blend of components produced by males, although significant numbers were also captured in traps baited with (R)-3-hydroxyhexan-2-one alone or in blends with other compounds. Too few adult S. fulminans were captured for a statistical comparison among treatments, but all were caught in traps baited with lures containing (R)-3-hydroxyhexan-2-one. In addition to these two species, adults of two other species of cerambycid beetles, for which pheromones had previously been identified, were caught: Neoclytus a. acuminatus (F.) and its congener Neoclytus m. mucronatus (F.). Cross-attraction of beetles to pheromone blends of other species, and to individual pheromone components that are shared by two or more sympatric species, may facilitate location of larval hosts by species that compete for the same host species.  相似文献   

6.
Plants emit volatile blends that may be quantitatively and/or qualitatively different in response to attack by different herbivores. These differences may convey herbivore-specific information to parasitoids, and are predicted to play a role in mediating host specificity in specialist parasitoids. Here, we tested the above prediction by using as models two parasitoids (Hymenoptera: Braconidae) of cotton caterpillars with different degree of host specificity: Microplitis croceipes, a specialist parasitoid of Heliothis spp., and Cotesia marginiventris, a generalist parasitoid of caterpillars of several genera including Heliothis spp. and Spodoptera spp. We compared GC-EAD (coupled gas chromatography electroantennogram detection) responses of both parasitoid species to headspace volatiles of cotton plants damaged by H. virescens (a host species for both parasitoids) vs. S. exigua (a host species for C. marginiventris). Based on a recent study in which we reported differences in the EAG responses of both parasitoids to different types of host related volatiles, we hypothesized that M. croceipes (specialist) would show relatively greater GC-EAD responses to the herbivore-induced plant volatile (HIPV) components of cotton headspace, whereas C. marginiventris (generalist) would show greater response to the green leaf volatile (GLV) components. Thirty volatile components were emitted by cotton plants in response to feeding by either of the two caterpillars, however, 18 components were significantly elevated in the headspace of H. virescens damaged plants. Sixteen consistently elicited GC-EAD responses in both parasitoids. As predicted, C. marginiventris showed significantly greater GC-EAD responses than M. croceipes to most GLV components, whereas several HIPV components elicited comparatively greater responses in M. croceipes. These results suggest that differences in the ratios of identical volatile compounds between similar volatile blends may be used by specialist parasitoids to discriminate between host-plant and non-host-plant complexes.  相似文献   

7.
The sex pheromone of the chrysanthemum gall midge, Rhopalomyia longicauda (Diptera: Cecidomyiidae), the most important insect pest in commercial plantations of chrysanthemum, Dendranthema morifolium (Ramat.) Tzvel., in China, was identified, synthesized, and field-tested. Volatile chemicals from virgin females and males were collected on Porapak in China and sent to the United Kingdom for analysis. Coupled gas chromatographic–electroantennographic detection (GC-EAG) analysis of volatile collections from females revealed two compounds that elicited responses from antennae of males. These compounds were not present in collections from males. The major EAG-active compound was identified as 2-butyroxy-8-heptadecene by gas chromatographic (GC) retention indices, mass spectra, in both electron impact and chemical ionization modes, hydrogenation, epoxidation, and derivatization with dimethyldisulfide. The lesser EAG-active compound was identified as the corresponding alcohol. The ratio of butyrate to alcohol in the collections was 1:0.26. Racemic (Z)-8-heptadecen-2-ol and the corresponding butyrate ester were synthesized from (Z)-7-hexadecenyl acetate, and the synthetic compounds found to have identical GC retention indices and mass spectra to those of the natural, female-specific components. Analysis of the volatile collections on an enantioselective cyclodextrin GC column showed the natural pheromone contained (2S,8Z)-2-butyroxy-8-heptadecene. Field tests showed that rubber septa containing racemic (Z)-2-butyroxy-8-heptadecene were attractive to R. longicauda males. The (naturally occurring) S-enantiomer was equally as attractive as the racemate, while the R-enantiomer was not attractive to males, and did not inhibit the activity of the S-enantiomer. The attractiveness of the butyrate was significantly reduced by the presence of even small amounts of the corresponding alcohol.  相似文献   

8.
The mycelia of two wood decay basidiomycete fungi were grown opposing each other across a 1-μm pore membrane supported on the surface of malt broth, contained within a sealable reaction vessel. Production of volatiles during the time course of interaction was followed by collecting head space samples by solid phase microextraction (100 μm polydimethylsiloxane fiber) on five occasions over 25 d following coinoculation of the fungi: 1, 3 (i.e., immediately prior to mycelial contact), 9 (1–2 d after initiation of pigment production by Resinicium bicolor), 17, and 25 d. Ten volatiles were produced during interactions that were not detected in single species controls. In general, most (18) fungal volatiles were sesquiterpenes eluted between 12.5 and 21 min, with a further two eluted at 29.1 and 33.9 min; a benzoic acid methyl ester, a benzyl alcohol, and a quinolinium type compound with a distinctive fragmentation pattern at m/z 203, 204, 206, and 207 were also identified; three volatiles with m/z maxima of 163, 159, and 206–208, respectively, remained unidentified. The results are discussed in relation to possible ecological roles of volatiles.  相似文献   

9.
Larvae of the coccinellid beetle Cheilomenes sexmaculata (F.) produce an oviposition-deterring pheromone that inhibits egg laying of conspecific females on oviposition sites walked over by first-instar larvae. By use of bioassay-guided fractionation of larval extracts, (Z)-pentacos-12-ene was identified as an active component of the cuticular hydrocarbons of the larvae. Other compounds that occur in the active fractions, such as the alkaloid coccinelline and saturated hydrocarbons, were individually tested but proved to be inactive. The synthesis of (Z)-pentacos-12-ene is reported.  相似文献   

10.
We report the comparative inducing effects of a phytopathogen and a herbivorous arthropod on the performance of an herbivore. Tomato, Lycopersicon esculentum Mill., was used as the test plant, and tomato mosaic virus (ToMV) and corn earworm, Helicoverpa armigera Hübner, were used as the phytopathogen and herbivore, respectively. There were decreases in the efficiency of conversion of ingested food and efficiency of conversion of digested food when H. armigera was reared on tomato plants that had been previously inoculated with ToMV. However, virus inoculation did not affect feeding or oviposition preferences by H. armigera. In contrast, approximate digestibility, total consumption, relative growth rate, and relative consumption rate were lower for fourth-instar H. armigera that fed on plants previously damaged by the same herbivore. Feeding and oviposition were both deterred for H. armigera that fed on previously damaged plants. The duration of development of H. armigera was also prolonged under this treatment. Infection by ToMV and feeding damage by H. armigera increased the host plant’s peroxidase and polyphenol oxidase activity, respectively, suggesting that the performance of H. armigera may be affected by the induced phytochemistry of the host plant. Overall, this study indicated that, in general, insect damage has a stronger effect than ToMV infection on plant chemistry and, subsequently, on the performance of H. armigera.  相似文献   

11.
The diamondback moth (Plutella xylostella), a crucifer-specialist pest, has been documented to employ glucosinolates as host recognition cues for oviposition. Through the use of mutant Arabidopsis thaliana plants, we investigated the role of specific classes of glucosinolates in the signaling of oviposition by P. xylostella in vivo. Indole glucosinolate production in A. thaliana was found to be crucial in attracting oviposition. Additionally, indole glucosinolates functioned as oviposition cues only when in their intact form. 4-Methoxy-indol-3-ylmethylglucosinolate was implicated as an especially strong oviposition attractant in vitro, suggesting that indole glucosinolate secondary structure may play a role in P. xylostella host recognition as well. Aliphatic glucosinolate-derived breakdown products were found to attract P. xylostella, but only after damage or in the absence of indole glucosinolates. Furthermore, mutant plants lacking both intact indole glucosinolates and aliphatic glucosinolate breakdown products exhibited decreased oviposition attractiveness beyond that of the progenitor mutants lacking either component of the glucosinolate-myrosinase system. Therefore, we conclude that nonvolatile indole glucosinolates and volatile aliphatic glucosinolate breakdown products both appear to play important roles as host recognition cues for P. xylostella oviposition.  相似文献   

12.
The effects of limonene, a mixture of limonene + carvone (1:1, v/v), and methyl jasmonate (MeJA) on diamondback moth (DBM) (Plutella xylostella L.) oviposition, larval feeding, and the behavior of its larval parasitoid Cotesia plutellae (Kurdjumov) with cabbage (Brassica oleracea L. ssp. capitata, cvs. Rinda and Lennox) and broccoli (B. oleracea subsp. Italica cv Lucky) were tested. Limonene showed no deterrent effect on DBM when plants were sprayed with or exposed to limonene, although there was a cultivar difference. A mixture of limonene and carvone released from vermiculite showed a significant repellent effect, reducing the number of eggs laid on the cabbages. MeJA treatment reduced the relative growth rate (RGR) of larvae on cv Lennox leaves. In Y-tube olfactometer tests, C. plutellae preferred the odors of limonene and MeJA to filtered air. In cv Lennox, the parasitoid preferred DBM-damaged plants with limonene to such plants without limonene. C. plutellae females were repelled by the mixture of limonene + carvone. In both cultivars, exogenous MeJA induced the emission of the sesquiterpene (E,E)-α-farnesene, the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and green leaf volatile (Z)-3-hexenyl acetate + octanal. The attractive effect of limonene and MeJA predicts that these two compounds can be used in sustainable plant protection strategies in organic farming.  相似文献   

13.
Hyalesthes obsoletus Signoret (Homoptera: Cixiidae) is a polyphagous planthopper that transmits stolbur phytoplasma (a causative agent of yellows disease) to various weeds, members of the Solanaceae, and wine grapes (Vitis vinifera L.) in Europe and the Middle East. Planthoppers were collected by hand vacuuming eight native plant species. Vitex agnus-castus L., a shrub in the Verbenaceae, hosted the largest number of H. obsoletus, although Olea europaea L. also served as a host for adults. Using a Y-olfactometer, we compared the planthoppers relative preference for V. agnus-castus, Convolvulus arvensis, and V. vinifera. V. agnus-castus was more attractive to both male and female H. obsoletus than the other plants. H. obsoletus antennal response was stronger to volatiles collected from V. agnus-castus than from Cabernet Sauvignon variety of V. vinifera. To determine if V. agnus-castus would serve as a reservoir for the pathogen, H. obsoletus were collected from leaf and stem samples of native V. agnus-castus, and were tested by polymerase chain reaction (PCR) for the presence of phytoplasma DNA. While 14% and 25% (2003 and 2004, respectively) of the insects tested positive for phytoplasma DNA, none of the plant samples tested positive. To determine if V. agnus-castus could serve as a host plant for the development of the planthopper, we placed emergence cages beneath field shrubs and enclosed wild-caught H. obsoletus in a cage with a potted young shrub. We found adult H. obsoletus in the emergence cases and planthopper nymphs in the soil of the potted plant. We concluded that V. agnus-castus is attractive to H. obsoletus, which seems to be refractory to phytoplasma infections and warrants further testing as a trap plant near vineyards.  相似文献   

14.
Our objective was to identify the sex pheromone of Lymantria bantaizana (Lepidoptera: Lymantriidae) whose larvae feed exclusively on walnut, Juglans spp., in China, and Japan. Coupled gas chromatographic–electroantennographic detection (GC-EAD) analyses of pheromone gland extracts revealed a single EAD-active component. Retention index calculations of this compound on four GC columns suggested that it was a methyl-branched octadecadiene with conjugated double bonds. In GC-EAD analyses of 2-methyloctadecenes, (Z)-2-methyl-7-octadecene and (E)-2-methyl-7-octadecene elicited the strongest antennal responses, suggesting that the double bond positions were at C7 and C9. In comparative GC-EAD analyses of pheromone gland extract and stereoselectively synthesized isomers (E,E; E,Z; Z,E; Z,Z) of 2-methyl-7,9-octadecadiene, the (E,Z)- and (Z,E)-isomer had retention times identical to that of the candidate pheromone, but only the latter isomer elicited strong EAD activity. Results of field experiments in Japan substantiated that (7Z,9E)-2-methyl-7,9-octadecadiene is the L. bantaizana sex pheromone, a compound previously unknown in the Lepidoptera. Detection surveys in North America for exotic Eurasian forest defoliators could include traps baited with the L. bantaizana pheromone.  相似文献   

15.
Anagrus nilaparvatae, an egg parasitoid of the rice brown planthopper Nilaparvata lugens, was attracted to volatiles released from N. lugens-infested plants, whereas there was no attraction to volatiles from undamaged plants, artificially damaged plants, or volatiles from N. lugens nymphs, female adults, eggs, honeydew, and exuvia. There was no difference in attractiveness between plants infested by N. lugens nymphs or those infested by gravid females. Attraction was correlated with time after infestation and host density; attraction was only evident between 6 and 24 hr after infestation by 10 adult females per plant, but not before or after. Similarly, after 24 hr of infestation, wasps were attracted to plants with 10 to 20 female planthoppers, but not to plants with lower or higher numbers of female planthoppers. The attractive time periods and densities may be correlated with the survival chances of the wasps' offspring, which do not survive if the plants die before the wasps emerge. Wasps were also attracted to undamaged mature leaves of a rice plant when one of the other mature leaves had been infested by 10 N. lugens for 1 d, implying that the volatile cues involved in host location by the parasitoid are systemically released. Collection and analyses of volatiles revealed that 1 d of N. lugens infestation did not result in the emission of new compounds or an increase in the total amount of volatiles, but rather the proportions among the compounds in the blend were altered. The total amounts and proportions of the chemicals were also affected by infestation duration. These changes in volatile profiles might provide the wasps with specific information on host habitat quality and thus could explain the observed behavioral responses of the parasitoid.  相似文献   

16.
The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.  相似文献   

17.
Diaeretiella rapae, a parasitoid that predominately specializes in the parasitism of Brassica-feeding aphids, attacks Lipaphis erysimi, a specialist feeding aphid of the Brassicaceae and other families in the Capparales, at a greater rate than the generalist-feeding aphid, Myzus persicae. In this study, we investigated the orientation behavior of D. rapae to the volatile chemicals produced when these two aphid species feed on turnip (Brassica rapa var rapifera). We showed no significant preference orientation behavior to either aphid/turnip complex over the other. Isothiocyanates are among the compounds emitted by plants of the Brassicaceae in response to insect feeding damage, including by aphids. We assessed parasitoid orientation behavior in response to laboratory-formulated isothiocyanates. We tested two formulations and discovered significant orientation toward 3-butenyl isothiocyanate. We also assessed plant and aphid glucosinolate content, and showed large levels of glucosinolate concentration in L. erysimi, whereas there was little change in plant content in response to aphid feeding. Our results suggest that during the process of host location, similar cues may be utilized for locating L. erysimi and M. persicae, whereas the acceptance of hosts and their suitability may involve aspects of nonvolatile aphid chemistry.  相似文献   

18.
We investigated the influence of juvenile hormones (JH) on the composition of cuticular hydrocarbons (CHCs) and the division of labor in colonies of the African ant Myrmicaria eumenoides. CHCs have long been implicated in nestmate recognition in social insect colonies. In M. eumenoides, the CHC profiles also vary with the task performed from brood-tender-type to forager type. The endocrine factors regulating the task allocation as well as the intracolonial recognition cues are not well understood, but JHs are prime candidates. Only JH III was identified in the hemolymph of M. eumenoides workers. Foragers had significantly higher JH III titers than brood tenders. The application of exogenous JH III and a JH analogue (methoprene) to M. eumenoides workers did not result in an observable acceleration of task change in our study. However, longevity of the focus workers, and thus the observational period, was reduced by the applications. Changes from a brood-tender-type to a forager-type CHC profile were accelerated by the application of JH III and methoprene, resulting in brood-tending workers that displayed forager-type CHC profiles. We present the first data supporting that recognition cues of an eusocial Hymenopteran are influenced by JH III, which could thus play a major role in the regulation of the dynamic nature of social insect colonies. JH III is connected to at least two key processes: the acceleration of CHC changes and the more long-term modulation of task shifting. Moreover, this indicates that changes in CHC recognition cues do not trigger task allocation in social insect colonies.  相似文献   

19.
The ability to cope with plant defense chemicals differs between specialist and generalist species. In this study, we examined the effects of the concentration of the two main iridoid glycosides (IGs) in Plantago lanceolata, aucubin and catalpol, on the performance of a specialist and two generalist herbivores and their respective endoparasitoids. Development of the specialist herbivore Melitaea cinxia was unaffected by the total leaf IG concentration in its host plant. By contrast, the generalist herbivores Spodoptera exigua and Chrysodeixis chalcites showed delayed larval and pupal development on plant genotypes with high leaf IG concentrations, respectively. This result is in line with the idea that specialist herbivores are better adapted to allelochemicals in host plants on which they are specialized. Melitaea cinxia experienced less post-diapause larval and pupal mortality on its local Finnish P. lanceolata than on Dutch genotypes. This could not be explained by differences in IG profiles, suggesting that M. cinxia has adapted in response to attributes of its local host plants other than to IG chemistry. Development of the specialist parasitoid Cotesia melitaearum was unaffected by IG variation in the diet of its host M. cinxia, a response that was concordant with that of its host. By contrast, the development time responses of the generalist parasitoids Hyposoter didymator and Cotesia marginiventris differed from those of their generalist hosts, S. exigua and C. chalcites. While their hosts developed slowly on high-IG genotypes, development time of H. didymator was unaffected. Cotesia marginiventris actually developed faster on hosts fed high-IG genotypes, although they then had short adult longevity. The faster development of C. marginiventris on hosts that ate high-IG genotypes is in line with the “immunocompromized host” hypothesis, emphasizing the potential negative effects of toxic allelochemicals on the host’s immune response.  相似文献   

20.
The sandalwood kernels of Santalum insulare (Santalaceae) collected in French Polynesia give seed oils containing significant amounts of ximenynic acid, E-11-octadecen-9-oic acid (64–86%). Fatty acid (FA) identifications were performed by gas chromatography/mass spectrometry (GC/MS) of FA methyl esters. Among the other main eight identified fatty acids, oleic acid was found at a 7–28% level. The content in stearolic acid, octadec-9-ynoic acid, was low (0.7–3.0%). An inverse relationship was demonstrated between ximenynic acid and oleic acid using 20 seed oils. Results obtained have been compared to other previously published data on species belonging to the Santalum genus, using multivariate statistical analysis. The relative FA S. insulare composition, rich in ximenynic acid is in the same order of those given for S. album or S. obtusifolium. The other compared species (S. acuminatum, S. lanceolatum, S. spicatum and S. murrayanum) are richer in oleic acid (40–59%) with some little differences in linolenic content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号