首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
The development of drug resistance remains a critical problem for current HIV‐1 antiviral therapies, creating a need for new inhibitors of HIV‐1 replication. We previously reported on a novel anti‐HIV‐1 compound, N2‐(phenoxyacetyl)‐N‐[4‐(1‐piperidinylcarbonyl)benzyl]glycinamide ( 14 ), that binds to the highly conserved phosphatidylinositol (4,5)‐bisphosphate (PI(4,5)P2) binding pocket of the HIV‐1 matrix (MA) protein. In this study, we re‐evaluate the hits from the virtual screen used to identify compound 14 and test them directly in an HIV‐1 replication assay using primary human peripheral blood mononuclear cells. This study resulted in the identification of three new compounds with antiviral activity; 2‐(4‐{[3‐(4‐fluorophenyl)‐1,2,4‐oxadiazol‐5‐yl]methyl})‐1‐piperazinyl)‐N‐(4‐methylphenyl)acetamide ( 7 ), 3‐(2‐ethoxyphenyl)‐5‐[[4‐(4‐nitrophenyl)piperazin‐1‐yl]methyl]‐1,2,4‐oxadiazole ( 17 ), and N‐[4‐ethoxy‐3‐(1‐piperidinylsulfonyl)phenyl]‐2‐(imidazo[2,1‐b][1,3]thiazol‐6‐yl)acetamide ( 18 ), with compound 7 being the most potent of these hits. Mechanistic studies on 7 demonstrated that it directly interacts with and functions through HIV‐1 MA. In accordance with our drug target, compound 7 competes with PI(4,5)P2 for MA binding and, as a result, diminishes the production of new virus. Mutation of residues within the PI(4,5)P2 binding site of MA decreased the antiviral effect of compound 7 . Additionally, compound 7 displays a broadly neutralizing anti‐HIV activity, with IC50 values of 7.5–15.6 μM for the group M isolates tested. Taken together, these results point towards a novel chemical probe that can be used to more closely study the biological role of MA and could, through further optimization, lead to a new class of anti‐HIV‐1 therapeutics.  相似文献   

2.
Herein we report the synthesis and evaluation of a series of new pramipexole derivatives as highly potent and selective agonists of the dopamine‐3 (D3) receptor. A number of these new compounds bind to the D3 receptor with sub‐nanomolar affinity and show excellent selectivity (>10 000) for the D3 receptor over the D1 and D2 receptors. For example, compound 23 (N‐(cis‐3‐(2‐(((S)‐2‐amino‐4,5,6,7‐tetrahydrobenzo[d]thiazol‐6‐yl)(propyl)amino)ethyl)‐3‐hydroxycyclobutyl)‐3‐(5‐methyl‐1,2,4‐oxadiazol‐3‐yl)benzamide) binds to the D3 receptor with a Ki value of 0.53 nM and shows a selectivity of >20 000 over the D2 and D1 receptors in the binding assays using a rat brain preparation. It has excellent stability in human liver microsomes. Moreover, in vitro functional assays showed it to be a full agonist for the human D3 receptor.  相似文献   

3.
Cytosolic phospholipase A2α (cPLA2α) may play a critical role in neuropsychiatric and neurodegenerative disorders associated with oxidative stress and neuroinflammation. An effective PET radioligand for imaging cPLA2α in living brain might prove useful for biomedical research, especially on neuroinflammation. We selected four high‐affinity (IC50 2.1–12 nm ) indole‐5‐carboxylic acid‐based inhibitors of cPLA2α, namely 3‐isobutyryl‐1‐(2‐oxo‐3‐(4‐phenoxyphenoxy)propyl)‐1H‐indole‐5‐carboxylic acid ( 1 ); 3‐acetyl‐1‐(2‐oxo‐3‐(4‐(4‐(trifluoromethyl)phenoxy)phenoxy)propyl)‐1H‐indole‐5‐carboxylic acid ( 2 ); 3‐(3‐methyl‐1,2,4‐oxadiazol‐5‐yl)‐1‐(2‐oxo‐3‐(4‐phenoxyphenoxy)propyl)‐1H‐indole‐5‐carboxylic acid ( 3 ); and 3‐(3‐methyl‐1,2,4‐oxadiazol‐5‐yl)‐1‐(3‐(4‐octylphenoxy)‐2‐oxopropyl)‐1H‐indole‐5‐carboxylic acid ( 4 ), for labelling in carboxyl position with carbon‐11 (t1/2=20.4 min) to provide candidate PET radioligands for imaging brain cPLA2α. Compounds [11C] 1 – 4 were obtained for intravenous injection in adequate overall yields (1.1–5.5 %) from cyclotron‐produced [11C]carbon dioxide and with moderate molar activities (70–141 GBq μmol?1) through the use of Pd0‐mediated [11C]carbon monoxide insertion on iodo precursors. Measured logD7.4 values were within a narrow moderate range (1.9–2.4). After intravenous injection of [11C] 1 – 4 in mice, radioactivity uptakes in brain peaked at low values (≤0.8 SUV) and decreased by about 90 % over 15 min. Pretreatments of the mice with high doses of the corresponding non‐radioactive ligands did not alter brain time–activity curves. Brain uptakes of radioactivity after administration of [11C] 1 to wild‐type and P‐gp/BCRP dual knock‐out mice were similar (peak 0.4 vs. 0.5 SUV), indicating that [11C] 1 and others in this structural class, are not substrates for efflux transporters.  相似文献   

4.
The 5‐HT7 receptor (5‐HT7R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5‐HT7R antagonist SB‐269970 exhibited antidepressant‐like activity, whereas systemic administration of the 5‐HT7R agonist AS‐19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5‐HT7R antagonists or agonists, aryl biphenyl‐3‐ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5‐HT7R. Among the synthesized compounds, 1‐([2′‐methoxy‐(1,1′‐biphenyl)‐3‐yl]methyl)‐4‐(2‐methoxyphenyl)piperazine ( 28 ) was the best binder to the 5‐HT7R (pKi=7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5‐HT7R over other serotonin receptor subtypes, such as 5‐HT1R, 5‐HT2R, 5‐HT3R, and 5‐HT6R. In a molecular modeling study, the 2‐methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.  相似文献   

5.
6.
7.
A group of cyclooxygenase‐2 (COX‐2)‐specific fluorescent cancer biomarkers were synthesized by linking the anti‐inflammatory drugs ibuprofen, (S)‐naproxen, and celecoxib to the 7‐nitrobenzofurazan (NBD) fluorophore. In vitro COX‐1/COX‐2 inhibition studies indicated that all of these fluorescent conjugates are COX‐2 inhibitors (IC50 range: 0.19–23.0 μM ) with an appreciable COX‐2 selectivity index (SI≥4.3–444). In this study the celecoxib–NBD conjugate N‐(2‐((7‐nitrobenzo[c][1,2,5]oxadiazol‐4‐yl)amino)ethyl)‐4‐(5‐(p‐tolyl)‐3‐(trifluoromethyl)‐1H‐pyrazol‐1‐yl)benzenesulfonamide ( 14 ), which displayed the highest COX‐2 inhibitory potency and selectivity (COX‐2 IC50=0.19 μM ; SI=443.6), was identified as an impending COX‐2‐specific biomarker for the fluorescence imaging of cancer using a COX‐2‐expressing human colon cancer cell line (HCA‐7).  相似文献   

8.
4‐(4′‐Aminophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( 1 ) was reacted with 1,8‐naphthalic anhydride ( 2 ) in a mixture of acetic acid and pyridine (3 : 2) under refluxing temperature and gave 4‐(4′‐N‐1,8‐naphthalimidophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( NIPTD ) ( 3 ) in high yield and purity. The compound NIPTD was reacted with excess n‐propylisocyanate in N,N‐dimethylacetamide solution and gave 1‐(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐triazolidine‐3,5‐dione ( 4 ) and 1,2‐bis(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐ triazolidine‐3,5‐dione ( 5 ) as model compounds. Solution polycondensation reactions of monomer 3 with hexamethylene diisocyanate ( HMDI ), isophorone diisocyanate ( IPDI ), and tolylene‐2,4‐diisocyanate ( TDI ) were performed under microwave irradiation and conventional solution polymerization techniques in different solvents and in the presence of different catalysts, which led to the formation of novel aliphatic‐aromatic polyureas. The polycondensation proceeded rapidly, compared with conventional solution polycondensation, and was almost completed within 8 min. These novel polyureas have inherent viscosities in a range of 0.06–0.20 dL g?1 in conc. H2SO4 or DMF at 25°C. Some structural characterization and physical properties of these novel polymers are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2861–2869, 2003  相似文献   

9.
Chromium complexes with N,N,N‐tridentate ligands, LCrCl3 (L = 2,6‐bis{(4S)‐(?)‐isopropyl‐2‐oxazolin‐2‐yl}pyridine ( 1 ), 2,2′:6′,2″‐terpyridine ( 2 ), and 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine ( 3 )), were prepared. The structures of 1 and 2 were determined by X‐ray crystallography. Upon activation with modified methylaluminoxane (MMAO), 1 catalyzed the polymerization of 1,3‐butadiene, while 2 and 3 was inactive. The obtained poly(1,3‐butadiene) obtained with 1 ‐MMAO was found to have completely trans‐1,4 structure. The 1 ‐MMAO system also showed catalytic activity for the polymerization of isoprene to give polyisoprene with trans‐1,4 (68%) and cis‐1,4 (32%) structure. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

11.
This review updates the major progress in the field of enantioselective one‐, two‐, and multi‐component domino reactions promoted by chiral metal catalysts, covering the literature since the beginning of 2012. It illustrates how enantioselective metal‐catalyzed processes have emerged as outstanding tools for the development of a wide variety of fascinating one‐pot asymmetric domino reactions, allowing complex and diverse structures to be easily generated from simple materials in a single step. During the last 4 years, a myriad of already existing as well as completely novel and powerful asymmetric domino processes have been developed on the basis of asymmetric metal catalysis, taking economical advantages, such as avoiding costly protecting groups and time‐consuming purification procedures after each step. Abbreviations: acac: acetylacetonate; Ad: 1‐adamantyl; Ar: aryl; BArF: tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate; BBN: 9‐borabicyclo[3.3.1]nonane; BINAP: 2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl; BINAP(O): 2‐diphenylphosphino‐2′‐diphenylphosphinyl‐1,1′‐binaphthalene; BINOL: 1,1′‐bi‐2‐naphthol; BIPHEP: 2,2′‐bis(diphenylphosphino)‐1,1′‐biphenyl; Bipy: bipyridine; Bn: benzyl; Boc: tert‐butoxycarbonyl; bod: bicyclo[2.2.2]octane‐2,5‐diene; Box: bisoxazoline; bpe: 1,2‐bis(2‐pyridyl)ethane; Bs: p‐bromobenzenesulfonyl (brosyl); Bz: benzoyl; Cat: catalyst; Cbz: benzyloxycarbonyl; CMOF: chiral mixed metal‐organic framework; cod: cyclooctadiene; coe: cyclooctene; Cp: cyclopentadienyl; CPME: cyclopentyl methyl ether; Cy: cyclohexyl; DABCO: 1,4‐diazabicyclo[2.2.2]octane; dba: (E,E)‐dibenzylideneacetone; DBDMH: 1,3‐dibromo‐5,5‐dimethylhydantoin; DCE: dichloroethane; de: diastereomeric excess; Dec: decyl; DET: diethyl tartrate; DIPEA: diisopropylethylamine; DME: 1,2‐dimethoxyethane; DMF: N,N‐dimethylformamide; DTBM: di‐tert‐butylmethoxy; ee: enantiomeric excess; EWG: electron‐withdrawing group; Fesulphos: 1‐phosphino‐2‐sulfenylferrocene; Hept: heptyl; Hex: hexyl; HFIPA: hexafluoroisopropyl alcohol; HMPA: hexamethylphosphoramide; JohnPhos: (2‐biphenyl)di‐tert‐butylphosphine; Josiphos: 1‐[2‐(diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine ethanol adduct; L: ligand; Mandyphos: 1,1′‐bis[(dimethylamino)benzyl]‐2,2′‐bis(diphenylphosphino)ferrocene; Me‐DuPhos: 1,2‐bis(2,5‐dimethylphospholano)benzene; MOM: methoxymethyl; Ms: mesyl; MS: molecular sieves; MTBE: methyl tert‐butyl ether; Naph: naphthyl; NBS: N‐bromosuccinimide; Ns: nosyl (4‐nitrobenzenesulfonyl); Oct: octyl; Pent: pentyl; Phos: phosphinyl; Phox: phosphinooxazoline; Pin: pinacolato; PG: protecting group; Phth: phthalimido; Piv: pivaloyl; PMB: p‐methoxybenzyl; PMP: 1,2,2,6,6‐pentamethylpiperidine; PTAD: 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione; Py: pyridyl; Pybox: 2,6‐bis(2‐oxazolyl)pyridine; QUINOX: (quinolin‐2‐yl)‐oxazoline; rs: regioselectivity ratio; r.t.: room temperature; SDS: sodium dodecyl sulfate; Segphos: 5,5′‐bis(diphenylphosphino)‐4,4′‐bi‐1,3‐benzodioxole; SES: β‐trimethylsilylethanesulfonyl; Taniaphos: [2‐diphenylphosphinoferrocenyl](N,N‐dimethylamino)(2‐diphenylphosphinophenyl)methane; TBS: tert‐butyldimethylsilyl; TEA: trimethylamine; Tf: trifluoromethanesulfonyl; TFA: trifluoroacetic acid; THF: tetrahydrofuran; TIPS: triisopropylsilyl; TMG: 1,1,3,3‐tetramethylguanidine; TMS: trimethylsilyl; Tol: tolyl; Ts: 4‐toluenesulfonyl (tosyl); VANOL: 3,3′‐diphenyl‐2,2′‐bi‐1‐naphthol; Walphos: 1‐{2‐[2′‐(diphenylphosphino)phenyl]ferrocenyl}ethyldi[3,5‐bis(trifluoromethyl)phenyl]phosphine; Xyl: 3,5‐dimethylphenyl.

  相似文献   


12.
Previous studies by our research group have been concerned with the design of selective inhibitors of heme oxygenases (HO‐1 and HO‐2). The majority of these were based on a four‐carbon linkage of an azole, usually an imidazole, and an aromatic moiety. In the present study, we designed and synthesized a series of inhibition candidates containing a shorter linkage between these groups, specifically, a series of 1‐aryl‐2‐(1H‐imidazol‐1‐yl/1H‐1,2,4‐triazol‐1‐yl)ethanones and their derivatives. As regards HO‐1 inhibition, the aromatic moieties yielding best results were found to be halogen‐substituted residues such as 3‐bromophenyl, 4‐bromophenyl, and 3,4‐dichlorophenyl, or hydrocarbon residues such as 2‐naphthyl, 4‐biphenyl, 4‐benzylphenyl, and 4‐(2‐phenethyl)phenyl. Among the imidazole‐ketones, five ( 36 – 39 , and 44 ) were found to be very potent (IC50<5 μM ) toward both isozymes. Relative to the imidazole‐ketones, the series of corresponding triazole‐ketones showed four compounds ( 54 , 55 , 61 , and 62 ) having a selectivity index >50 in favor of HO‐1. In the case of the azole‐dioxolanes, two of them ( 80 and 85 ), each possessing a 2‐naphthyl moiety, were found to be particularly potent and selective HO‐1 inhibitors. Three non‐carbonyl analogues ( 87 , 89 , and 91 ) of 1‐(4‐chlorophenyl)‐2‐(1H‐imidazol‐1‐yl)ethanone were found to be good inhibitors of HO‐1. For the first time in our studies, two azole‐based inhibitors ( 37 and 39 ) were found to exhibit a modest selectivity index in favor of HO‐2. The present study has revealed additional candidates based on inhibition of heme oxygenases for potentially useful pharmacological and therapeutic applications.  相似文献   

13.
Isomers of 4‐amino‐1,3‐dinitrotriazol‐5‐one‐2‐oxide (ADNTONO) are of interest in the contest of insensitive explosives and were found to have true local energy minima at the DFT‐B3LYP/aug‐cc‐pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazol‐5‐one N‐oxides were obtained in their ground state. Kamlet‐Jacob equations were used to evaluate the performance properties. The detonation properties of ADNTONO (D=10.15 to 10.46 km s−1, P=50.86 to 54.25 GPa) are higher compared with those of 1,1‐diamino‐2,2‐dinitroethylene (D=8.87 km s−1, P=32.75 GPa), 5‐nitro‐1,2,4‐triazol‐3‐one (D=8.56 km s−1, P=31.12 GPa), 1,2,4,5‐tetrazine‐3,6‐diamine‐1,4‐dioxide (D=8.78 km s−1, P=31.0 GPa), 1‐amino‐3,4,5‐trinitropyrazole (D=9.31 km s−1, P=40.13 GPa), 4,4′‐dinitro‐3,3′‐bifurazan (D=8.80 km s−1, P=35.60 GPa) and 3,4‐bis(3‐nitrofurazan‐4‐yl)furoxan (D=9.25 km s−1, P=39.54 GPa). The  NH2 group(s) appears to be particularly promising area for investigation since it may lead to two desirable consequences of higher stability (insensitivity), higher density, and thus detonation velocity and pressure.  相似文献   

14.
The dehydrogenative α‐phosphonation of substituted N,N‐dialkylanilines by dialkyl H‐phosphonates was achieved under mild conditions by using environmentally benign iron(II) chloride as catalyst and tert‐butyl hydroperoxide as oxidant. The reaction proceeded in the presence of electron‐donating (methoxy, methyl, benzyl) and electron‐withdrawing ring‐substitutents (bromo, carbonyl, carboxyl, m‐nitro) in moderate to good yields. The X‐ray crystal structure of N‐(5,5‐dimethyl‐2‐oxo‐2λ5‐[1,3,2]dioxaphosphinan‐2‐yl‐methyl)‐N‐methyl‐p‐toluidine was determined. Bis‐(4‐(dimethylamino)phenyl)methane and bis‐4,4′‐(dimethylamino)benzophenone underwent bisphosphonation selectively by respective monophosphonation at the remote dimethylamino groups. Furthermore, the use of excess dialkyl H‐phosphonate and oxidant allowed us to functionalize both methyl groups of N(CH3)2 in N,N‐dimethyl‐p‐toluidine and N,N‐dimethylaminomesidine, respectively, to obtain α,α′‐bisphosphonatoamines in high yield.  相似文献   

15.
Chiral N‐(binaphthyl‐2‐yl)thiophosphoramide L7 [O,O‐diethyl 2′‐(ethylamino)‐1,1′‐binaphthyl‐2‐ylamidothiophosphate] prepared from the reaction of diethyl chlorothiophosphate with (R)‐(+)‐N‐ethyl‐1,1′‐binaphthyl‐2,2′‐diamine was used as a catalytic chiral ligand in the first Cu(OTf)2‐promoted catalytic asymmetric addition of diethylzinc to N‐(diphenylphosphinoyl) imines in which ~85% ee can be realized.  相似文献   

16.
A catalytic method employing the cationic iridium‐(Sc,Rp)‐DuanPhos [(1R,1′R,2S,2′S)‐2,2′‐di‐tert‐butyl‐2,2′,3,3‐tetrahydro‐1H,1′H‐1,1′‐biisophosphindole] complex and BARF {tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate} counterion effectively catalyzes the enantioselective hydrogenation of acyclic N‐arylimines with high turnover numbers (up to 10,000 TON) and excellent enantioselectivities (up to 98% ee), achieving the practical synthesis of chiral secondary amines.  相似文献   

17.
The synthesis of hemiphasmidic monomers 4‐[(3,4,5‐triethoxy)benzoyloxy]‐4′‐[(p‐allyloxy)benzoyloxy]biphenyl (M1), 4‐[(3,5‐diethoxy)benzoyloxy]‐4′‐[(p‐allyloxy)‐benzoyloxy]biphenyl (M2), and of the corresponding side‐chain liquid‐crystalline polysiloxanes (P1, P2) was carried out. For comparison, rodlike monomer 4‐[(p‐ethoxy)‐benzoyloxy]‐4′‐[(p‐allyloxy)benzoyloxy]biphenyl (M3) and its polysiloxanes (P3) were also prepared. The chemical structures of the monomers and polymers obtained were confirmed by FTIR and 1H‐NMR spectra. Their mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The relationship between structures and properties was discussed. It was observed that M1 and M3 were enantiotropic nematic phase, M2 was monotropic mesophase, and their poly(methylsiloxanes) (P1–P3) possessed a broad range enantiotropic nematic phases and high thermal stability. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 946–952, 2005  相似文献   

18.
In this work, two thiazole‐containing monomers N‐(thiazol‐2‐yl)?2‐(thiophen‐3‐yl)acetamide (ThDBTH) and N,N′‐([4,4′‐bithiazole]‐2,2′‐diyl)bis(2‐(thiophen‐3‐yl)acetamide) (Th2DBTH) were synthesized through amidification reaction of 2‐(thiophen‐3‐yl)acetyl chloride with aminothiazole derivatives and characterized by FTIR and 1H and 13C‐NMR. The monomers were subjected to electrochemical polymerization and optoelectronic properties of the resultant conducting polymers were investigated. Additionally, copolymerization of ThDBTH in the presence of thiophene was achieved. PThDBTH, PTh2DBTH, and P(ThDBTH‐Th) exhibited optical band gaps of 2.15, 2.30, and 1.95 eV, respectively. Switching time and optical contrast of the polymers were evaluated via kinetic studies. The P(ThDBTH‐Th) revealed satisfactory switching time and appropriate optical contrast of 1.27 s and 24.97%, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42206.  相似文献   

19.
A selective 5‐HT 1A receptor agonist : A new series of ligands acting at 5‐HT1A serotonin receptor were identified. Among them (2,2‐diphenyl‐[1,3]oxathiolan‐5‐yl‐methyl)‐(3‐phenyl‐propyl)amine (shown) possesses outstanding activity (pKi=8.72, pD2=7.67, Emax=85) and selectivity (5‐HT1A1D>150), and represents a new 5‐HT1A agonist chemotype.

  相似文献   


20.
The synthesis of 5‐[(acetylhydrazono)‐(4‐chlorophenyl)‐methyl]thiophen‐2‐yl ester of the trifluoromethanesulfonic acid ( 2a ) and its N‐methyl derivative 2b was attempted. Oxidation of 2‐thiophene boronic acid to 2‐hydroxythiophene and in situ reaction there of with triflic anhydride yielded the hitherto unknown thiophene‐2‐yl ester of the trifluormethanesulfonic acid ( 6 ) which was transformed under Friedel‐Crafts conditions into 5‐(4‐chlorobenzoyl)‐thiophene‐2‐yl ester of the trifluoromethanesulfonic acid ( 3 ). Reaction of 3 with acetyl hydrazine resulted in the formation of the title compound 2a , albeit in low yield. The conversion of N′‐[(5‐bromothiophen‐2‐yl)‐(4‐chlorophenyl)‐methylen]‐N‐methylhydrazide ( 4b ) via boronic acid into 5‐[(acetylmethylhydrazono)‐(4‐chlorophenyl)‐methyl]thiophen‐2‐yl ester of the trifluoromethanesulfonic acid ( 2b ) was not successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号