首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Metastatic castration-resistant prostate cancer (mCRPC) is a progressive and incurable disease with poor prognosis for patients. Despite introduction of novel therapies, the mortality rate remains high. An attractive alternative for extension of the life of mCRPC patients is PSMA-based targeted radioimmunotherapy. In this paper, we extended our in vitro study of 223Ra-labeled and PSMA-targeted NaA nanozeolites [223RaA-silane-PEG-D2B] by undertaking comprehensive preclinical in vitro and in vivo research. The toxicity of the new compound was evaluated in LNCaP C4-2, DU-145, RWPE-1 and HPrEC prostate cells and in BALB/c mice. The tissue distribution of 133Ba- and 223Ra-labeled conjugates was studied at different time points after injection in BALB/c and LNCaP C4-2 tumor-bearing BALB/c Nude mice. No obvious symptoms of antibody-free and antibody-functionalized nanocarriers cytotoxicity and immunotoxicity was found, while exposure to 223Ra-labeled conjugates resulted in bone marrow fibrosis, decreased the number of WBC and platelets and elevated serum concentrations of ALT and AST enzymes. Biodistribution studies revealed high accumulation of 223Ra-labeled conjugates in the liver, lungs, spleen and bone tissue. Nontargeted and PSMA-targeted radioconjugates exhibited a similar, marginal uptake in tumour lesions. In conclusion, despite the fact that NaA nanozeolites are safe carriers, the intravenous administration of NaA nanozeolite-based radioconjugates is dubious due to its high accumulation in the lungs, liver, spleen and bones.  相似文献   

2.
We assessed the tolerability and safety in rodents of a single intravenous (i.v.) dose of redaporfin, a novel photosensitizer for Photodynamic Therapy (PDT) of cancer. Two approaches were used to evaluate acute toxicity: (i) a dose escalation study in BALB/c mice to evaluate the maximum tolerated dose of redaporfin; and (ii) a safety toxicology study in Wistar rats, of a single dose of redaporfin, with or without illumination, to evaluate possible signs of systemic toxicity. Redaporfin formulation was well tolerated by mice, with no signs of adverse reactions up to 75 mg/kg. In rats, there were no relevant changes, except for a significant, but transient, increase in the blood serum markers for hepatic function and muscle integrity, and also on neutrophil counts, observed after the application of light. The overall results showed that redaporfin-PDT is very well tolerated. No abnormalities were observed, including reactions at the injection site or skin phototoxicity, although the animals were maintained in normal indoor lighting. Redaporfin also showed a high efficacy in the treatment of male BALB/c mice with subcutaneously implanted colon (CT26) tumours. Vascular-PDT with 1.5 mg/kg redaporfin and a light dose of 74 J/cm2 led to the complete tumour regression in 83% of the mice.  相似文献   

3.
3D tumor spheroids have arisen in the last years as potent tools for the in vitro screening of novel anticancer therapeutics. Nevertheless, to increase the reproducibility and predictability of the data originated from the spheroids it is still necessary to develop or optimize the techniques used for spheroids’ physical and biomolecular characterization. Fluorescence microscopy, such as confocal laser scanning microscopy (CLSM), is a tool commonly used by researchers to characterize spheroids structure and the antitumoral effect of novel therapeutics. However, its application in spheroids’ analysis is hindered by the limited light penetration in thick samples. For this purpose, optical clearing solutions have been explored to increase the spheroids’ transparency by reducing the light scattering. In this study, the influence of agitation conditions (i.e., static, horizontal agitation, and rotatory agitation) on the ClearT and ClearT2 methods’ clearing efficacy and tumor spheroids’ imaging by CLSM was characterized. The obtained results demonstrate that the ClearT method results in the improved imaging of the spheroids interior, whereas the ClearT2 resulted in an increased propidium iodide mean fluorescence intensity as well as a higher signal depth in the Z-axis. Additionally, for both methods, the best clearing results were obtained for the spheroids treated under the rotatory agitation. In general, this work provides new insights on the ClearT and ClearT2 clearing methodologies and their utilization for improving the reproducibility of the data obtained through the CLSM, such as the analysis of the cell death in response to therapeutics administration.  相似文献   

4.
Background: High protein (HP) diets have been proposed to reduce body weight in humans. The diets are known to alter energy metabolism, which can affect the quality of [18F]FDG PET heart images. In this preclinical study, we therefore explore the impact of a prolonged HP diet on myocardial [18F]FDG uptake. Methods: C57BL/6J (Black six (Bl6)) and apolipoprotein E-deficient (apoE−/−) mice were fed chow, a HP diet, or a low protein (LP) diet for 12 weeks. At baseline and after treatment, the animals were injected with 33.0 MBq of [18F]FDG and a 30 min PET/CT scan was made. Myocardial volume and [18F]FDG uptake were quantified using PET and the % of body fat was calculated from CT. Results: Myocardial [18F]FDG uptake was similar for all diets at the follow-up scan but an increase between baseline and follow-up scans was noticed in the LP groups. Myocardial volume was significantly smaller in the C57BL HP group compared to the other Bl6 groups. Body weight increased less in the two HP groups compared to the chow and LP groups. Body fat percentage was significantly higher in the LP groups. This effect was stronger in C57BL mice (28.7%) compared to apoE−/− mice (15.1%). Conclusions: Myocardial uptake of [18F]FDG in mice is not affected by increased protein intake but [18F]FDG uptake increases when the amount of protein is lowered. A lower body weight and percentage of body fat were noticed when applying a HP diet.  相似文献   

5.
A series of reinforced composite membranes were prepared from Nafion®212 and crosslinkable fluorine-containing polyimide (FPI) with various crosslinkers. The crosslinkable FPI reacts with the crosslinkers and forms semi-interpenetrating polymer networks (semi-IPN) structure with Nafion®212. The water uptake, swelling ratio, mechanical properties, thermal behavior, proton conductivity, and chemical oxidation stability of the composite membranes are studied. The degree of crosslinking is characterized by gel fraction of the composite membranes. Compared to pure Nafion®212, the composite membranes exhibit excellent thermal stability, improved mechanical properties and dimensional stability. The tensile strength of the composite membranes is in the range of 37.3-51.2 MPa. All the composite membranes exhibit high proton conductivity which ranges from 1.9 × 10−2 to 9.9 × 10−2 S cm−1. The proton conductivity of the composite membrane with 2-propene-1-sulfonic acid sodium salt (SAS) as the crosslinker is 9.9 × 10−2 S cm−1 at 100 °C which is similar to that of Nafion®212 under the same condition.  相似文献   

6.
Radiolabeled antibodies (mAbs) provide efficient tools for cancer therapy. The combination of low energy β-emissions (500 keVmax; 130 keVave) along with a γ-emission for imaging makes 177Lu (T1/2 = 6.7 day) a suitable radionuclide for radioimmunotherapy (RIT) of tumor burdens possibly too large to treat with α-particle radiation. RIT with 177Lu-trastuzumab has proven to be effective for treatment of disseminated HER2 positive peritoneal disease in a pre-clinical model. To elucidate mechanisms originating from this RIT therapy at the molecular level, tumor bearing mice (LS-174T intraperitoneal xenografts) were treated with 177Lu-trastuzumab comparatively to animals treated with a non-specific control, 177Lu-HuIgG, and then to prior published results obtained using 212Pb-trastuzumab, an α-particle RIT agent. 177Lu-trastuzumab induced cell death via DNA double strand breaks (DSB), caspase-3 apoptosis, and interfered with DNA-PK expression, which is associated with the repair of DNA non-homologous end joining damage. This contrasts to prior results, wherein 212Pb-trastuzumab was found to down-regulate RAD51, which is involved with homologous recombination DNA damage repair. 177Lu-trastuzumab therapy was associated with significant chromosomal disruption and up-regulation of genes in the apoptotic process. These results suggest an inhibition of the repair mechanism specific to the type of radiation damage being inflicted by either high or low linear energy transfer radiation. Understanding the mechanisms of action of β- and α-particle RIT comparatively through an in vivo tumor environment offers real information suitable to enhance combination therapy regimens involving α- and β-particle RIT for the management of intraperitoneal disease.  相似文献   

7.
Fluorine-containing polyimide with crosslinkable vinyl group (FPI) was synthesized from 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl (PFMB), and 4-amino styrene (AS). The reinforced composite membranes based on semi-interpenetrating polymer networks (semi-IPN) were prepared via solution casting of FPI and Nafion®212, and crosslinking thereafter. The water uptake, swelling ratio, mechanical properties, thermal behavior, proton conductivity, and oxidative stability of the composite membranes were investigated. Compared with the recast Nafion® 212, the composite membrane shows better mechanical properties and improved dimensional stability. The tensile strength of the composite membranes ranges from 39.0 MPa to 80.0 MPa, which is higher than that of the recast Nafion® 212 membrane (26.6 MPa). The dimensional stability of the composite membranes increases with increasing FPI content in the membranes, whereas the proton conductivity decreases. The composite membranes show considerable proton conductivity from 2.0 × 10−2 S cm−1 to 8.9 × 10−2 S cm−1 at a temperature from 30 °C to 100 °C, depending on the FPI contents. The composite membranes with semi-IPN from FPI and Nafion®212 have considerable high proton conductivity, excellent mechanical properties, thermal and dimensional stabilities.  相似文献   

8.
Yisi Guan  Haiyan Pan  Zhihong Chang  Ming Jin 《Polymer》2010,51(23):5473-5481
A new strategy to prepare the reinforced composite membranes for polymer electrolyte membrane fuel cells (PEMFCs), which can work both in humidified and anhydrous state, was proposed via constructing semi-interpenetrating polymer network (semi-IPN) structure from polybenzimidazole (PBI) and Nafion®212, with N-vinylimidazole as the crosslinker. The crosslinkable PBI was synthesized from poly(2,2′-(m-phenylene)-5,5′-bibenzimidazole) and p-vinylbenzyl chloride. The semi-IPN structure was formed during the membrane preparation. The composite membranes exhibit excellent thermal stability, high-dimensional stability, and significantly improved mechanical properties compared with Nafion®212. The proton transport in the hydrated composite membranes is mainly contributed by the vehicle mechanism, with proton conductivity from ∼10−2 S/cm to ∼10−1 S/cm. When the temperature exceeds 100 °C, the proton conductivity of the semi-IPN membranes decreases quickly due to the dehydration of the membranes. Under anhydrous condition, the proton conductivity of the membranes will drop to ∼10−4 S/cm, which is also useful for intermediate temperature (100-200 °C) PEMFCs. The benzimidazole structure of PBI and the acidic component of Nafion® provide the possibility for the proton mobility via structure diffusion involving proton transfer between the heterocycles with a corresponding reorganization of the hydrogen bonded network.  相似文献   

9.
The cation channel TRPV2 is known to be expressed by murine macrophages and is crucially involved in their functionality. Macrophages are frequent cells of the mouse testis, an immune-privileged and steroid-producing organ. TRPV2 expression by testicular macrophages and possible changes associated with age or inflammation have not been investigated yet. Therefore, we studied testes of young adult and old wild-type (WT) and AROM+ mice, i.e., transgenic mice overexpressing aromatase. In these animals, inflammatory changes are described in the testis, involving active macrophages, which increase with age. This is associated with impaired spermatogenesis and therefore AROM+ mice are a model for male infertility associated with sterile inflammation. In WT animals, testicular TRPV2 expression was mapped to interstitial CD206+ and peritubular MHC II+ macrophages, with higher levels in CD206+ cells. Expression levels of TRPV2 and most macrophage markers did not increase significantly in old mice, with the exception of CD206. As the number of TRPV2+ testicular macrophages was relatively small, their possible involvement in testicular functions and in aging in WT mice remains to be further studied. In AROM+ testis, TRPV2 was readily detected and levels increased significantly with age, together with macrophage markers and TNF-α. TRPV2 co-localized with F4/80 in macrophages and further studies showed that TRPV2 is mainly expressed by unusual CD206+MHC II+ macrophages, arising in the testis of these animals. Rescue experiments (aromatase inhibitor treatment and crossing with ERαKO mice) restored the testicular phenotype and also abolished the elevated expression of TRPV2, macrophage and inflammation markers. This suggests that TRPV2+ macrophages of the testis are part of an inflammatory cascade initiated by an altered sex hormone balance in AROM+ mice. The changes in testis are distinct from the described alterations in other organs of AROM+, such as prostate and spleen. When we monitored TRPV2 levels in another immune-privileged organ, namely the brain, we found that levels of TRPV2 were not elevated in AROM+ and remained stable during aging. In the adrenal, which similar to the testis produces steroids, we found slight, albeit not significant increases in TRPV2 in both AROM+ and WT mice, which were associated with age. Thus, the changes in the testis are specific for this organ.  相似文献   

10.
The expression of monocarboxylate transporters (MCTs) is linked to pathophysiological changes in diseases, including cancer, such that MCTs could potentially serve as diagnostic markers or therapeutic targets. We recently developed [18F]FACH as a radiotracer for non-invasive molecular imaging of MCTs by positron emission tomography (PET). The aim of this study was to evaluate further the specificity, metabolic stability, and pharmacokinetics of [18F]FACH in healthy mice and piglets. We measured the [18F]FACH plasma protein binding fractions in mice and piglets and the specific binding in cryosections of murine kidney and lung. The biodistribution of [18F]FACH was evaluated by tissue sampling ex vivo and by dynamic PET/MRI in vivo, with and without pre-treatment by the MCT inhibitor α-CCA-Na or the reference compound, FACH-Na. Additionally, we performed compartmental modelling of the PET signal in kidney cortex and liver. Saturation binding studies in kidney cortex cryosections indicated a KD of 118 ± 12 nM and Bmax of 6.0 pmol/mg wet weight. The specificity of [18F]FACH uptake in the kidney cortex was confirmed in vivo by reductions in AUC0–60min after pre-treatment with α-CCA-Na in mice (−47%) and in piglets (−66%). [18F]FACH was metabolically stable in mouse, but polar radio-metabolites were present in plasma and tissues of piglets. The [18F]FACH binding potential (BPND) in the kidney cortex was approximately 1.3 in mice. The MCT1 specificity of [18F]FACH uptake was confirmed by displacement studies in 4T1 cells. [18F]FACH has suitable properties for the detection of the MCTs in kidney, and thus has potential as a molecular imaging tool for MCT-related pathologies, which should next be assessed in relevant disease models.  相似文献   

11.
Despites the fact that T cells are involved in the pathogenesis of osteoarthritis (OA) little is known about the roles of CD8+ T cells in this disease. We investigated the effects of CD8+ T cells and the expression of tissue inhibitor of metalloproteinases 1 (TIMP-1) on joint pathology. Using anterior cruciate ligament-transection (ACLT), OA was induced in mice. The knee joints were histologically assessed for manifestations of OA. The CD8+ T cells from splenocytes and synovium were flow-cytometrically and immunochemically evaluated, respectively. Local expression of TIMP-1, matrix metalloproteinase (MMP)-13, and VEGF were examined. Cartilage degeneration was slower in CD8+ T cell knockout mice than in control mice. CD8+ T cells were activated once OA was initiated and expanded during OA progression. More CD8+ T cells from splenocytes expressed TIMP-1 in ACLT-group mice than in Sham-group mice. The number of TIMP-1-expressing CD8+ T cells in OA mice correlated with the disease severity. TIMP-1 expression in cartilage was co-localized with that of MMP-13 and VEGF. TIMP-1 protein was detected in synovium in which angiogenesis occurred. During the pathogenesis of OA, the expression of TIMP-1, VEGF and MMP-13 accompanying with CD8+ T cells activation were increased. Furthermore, inhibiting the expression of TIMP-1 in joints could retard the progression of OA.  相似文献   

12.
We previously reported that AR phosphorylation at serine 213 was associated with poor outcome and may contribute to prostate cancer development and progression. This study investigates if specific AR phosphorylation sites have differing roles in the progression of hormone naïve prostate cancer (HNPC) to castrate resistant disease (CRPC). A panel of phosphospecific antibodies were employed to study AR phosphorylation in 84 matched HNPC and CRPC tumours. Immunohistochemistry measured Androgen receptor expression phosphorylated at serine residues 94 (pAR94), 308 (pAR308), 650(pAR650) and 791 (pAR791). No correlations with clinical parameters were observed for pAR94 or pAR650 in HNPC or CRPC tumours. In contrast to our previous observation with serine 213, high pAR308 is significantly associated with a longer time to disease specific death (p = 0.011) and high pAR791 expression significantly associated with a longer time to disease recurrence (p = 0.018) in HNPC tumours and longer time to death from disease recurrence (p = 0.040) in CRPC tumours. This observation in CRPC tumours was attenuated in high apoptotic tumours (p = 0.022) and low proliferating tumours (p = 0.004). These results demonstrate that understanding the differing roles of AR phosphorylation is necessary before this can be exploited as a target for castrate resistant prostate cancer.  相似文献   

13.
The dysregulation of autophagy is important in the development of many cancers, including thyroid cancer, where V600EBRAF is a main oncogene. Here, we analyse the effect of V600EBRAF inhibition on autophagy, the mechanisms involved in this regulation and the role of autophagy in cell survival of thyroid cancer cells. We reveal that the inhibition of V600EBRAF activity with its specific inhibitor PLX4720 or the depletion of its expression by siRNA induces autophagy in thyroid tumour cells. We show that V600EBRAF downregulation increases LKB1-AMPK signalling and decreases mTOR activity through a MEK/ERK-dependent mechanism. Moreover, we demonstrate that PLX4720 activates ULK1 and increases autophagy through the activation of the AMPK-ULK1 pathway, but not by the inhibition of mTOR. In addition, we find that autophagy blockade decreases cell viability and sensitize thyroid cancer cells to V600EBRAF inhibition by PLX4720 treatment. Finally, we generate a thyroid xenograft model to demonstrate that autophagy inhibition synergistically enhances the anti-proliferative and pro-apoptotic effects of V600EBRAF inhibition in vivo. Collectively, we uncover a new role of AMPK in mediating the induction of cytoprotective autophagy by V600EBRAF inhibition. In addition, these data establish a rationale for designing an integrated therapy targeting V600EBRAF and the LKB1-AMPK-ULK1-autophagy axis for the treatment of V600EBRAF-positive thyroid tumours.  相似文献   

14.
Traumatic brain injury (TBI) modelled by lateral fluid percussion-induction (LFPI) in rats is a widely used experimental rodent model to explore and understand the underlying cellular and molecular alterations in the brain caused by TBI in humans. Current improvements in imaging with positron emission tomography (PET) have made it possible to map certain features of TBI-induced cellular and molecular changes equally in humans and animals. The PET imaging technique is an apt supplement to nanotheranostic-based treatment alternatives that are emerging to tackle TBI. The present study aims to investigate whether the two radioligands, [11C]PBR28 and [18F]flumazenil, are able to accurately quantify in vivo molecular-cellular changes in a rodent TBI-model for two different biochemical targets of the processes. In addition, it serves to observe any palpable variations associated with primary and secondary injury sites, and in the affected versus the contralateral hemispheres. As [11C]PBR28 is a radioligand of the 18 kD translocator protein, the up-regulation of which is coupled to the level of neuroinflammation in the brain, and [18F]flumazenil is a radioligand for GABAA-benzodiazepine receptors, whose level mirrors interneuronal activity and eventually cell death, the use of the two radioligands may reveal two critical features of TBI. An up-regulation in the [11C]PBR28 uptake triggered by the LFP in the injured (right) hemisphere was noted on day 14, while the uptake of [18F]flumazenil was down-regulated on day 14. When comparing the left (contralateral) and right (LFPI) hemispheres, the differences between the two in neuroinflammation were obvious. Our results demonstrate a potential way to measure the molecular alterations in a rodent-based TBI model using PET imaging with [11C]PBR28 and [18F]flumazenil. These radioligands are promising options that can be eventually used in exploring the complex in vivo pharmacokinetics and delivery mechanisms of nanoparticles in TBI treatment.  相似文献   

15.
Isotopic species of dioxygen released during the decomposition of 15N218O over Fe-ferrierite show that the zeolite oxygens participate in the reaction. While Fe-ferrierite alone does not exchange its oxygens with 18O2 below 400 °C, this exchange is very rapid in the mixture of 18O2+N2O. The amount of participating zeolite oxygen (ca. 1–6 per iron atom) is practically the same in the latter case as in the decomposition of 15N218O. The time dependence of individual dioxygen isotope species released during the 15N218O decomposition points to the primary release of 18O2 which is very rapidly exchanged for the zeolite oxygen by a single-step mechanism.  相似文献   

16.
β-Casomorphin-7 (BCM) is a degradation product of β-casein, a milk component, and has been suggested to affect the immune system. However, its effect on mucosal immunity, especially anti-tumor immunity, in cancer-bearing individuals is not clear. We investigated the effects of BCM on lymphocytes using an in vitro system comprising mouse splenocytes, a mouse colorectal carcinogenesis model, and a mouse orthotopic colorectal cancer model. Treatment of mouse splenocytes with BCM in vitro reduced numbers of cluster of differentiation (CD) 20+ B cells, CD4+ T cells, and regulatory T cells (Tregs), and increased CD8+ T cells. Administration of BCM and the CD10 inhibitor thiorphan (TOP) to mice resulted in similar alterations in the lymphocyte subsets in the spleen and intestinal mucosa. BCM was degraded in a concentration- and time-dependent manner by the neutral endopeptidase CD10, and the formed BCM degradation product did not affect the lymphocyte counts. Furthermore, degradation was completely suppressed by TOP. In the azoxymethane mouse colorectal carcinogenesis model, the incidence of aberrant crypt foci, adenoma, and adenocarcinoma was reduced by co-treatment with BCM and TOP. Furthermore, when CT26 mouse colon cancer cells were inoculated into the cecum of syngeneic BALB/c mice and concurrently treated with BCM and TOP, infiltration of CD8+ T cells was promoted, and tumor growth and liver metastasis were suppressed. These results suggest that by suppressing the BCM degradation system, the anti-tumor effect of BCM is enhanced and it can suppress the development and progression of colorectal cancer.  相似文献   

17.
18.
Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and plays a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS). It has been implicated as driver of disease progression and is observed in ALS patients, as well as in the transgenic SOD1G93A mouse model. Here, we explore and validate the therapeutic potential of the d-enantiomeric peptide RD2RD2 upon oral administration in SOD1G93A mice. Transgenic mice were treated daily with RD2RD2 or placebo for 10 weeks and phenotype progression was followed with several behavioural tests. At the end of the study, plasma cytokine levels and glia cell markers in brain and spinal cord were analysed. Treatment resulted in a significantly increased performance in behavioural and motor coordination tests and a decelerated neurodegenerative phenotype in RD2RD2-treated SOD1G93A mice. Additionally, we observed retardation of the average disease onset. Treatment of SOD1G93A mice led to significant reduction in glial cell activation and a rescue of neurons. Analysis of plasma revealed normalisation of several cytokines in samples of RD2RD2-treated SOD1G93A mice towards the levels of non-transgenic mice. In conclusion, these findings qualify RD2RD2 to be considered for further development and testing towards a disease modifying ALS treatment.  相似文献   

19.
The present article demonstrates selective cytotoxicity against cancer cells of the complexes [Co(LD)2]I2∙CH3OH (1), [CoLD(NCS)2] (2) and [VOLD(NCS)2]∙C6H5CH3 (3) containing the dipodal tridentate ligand LD = N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)amine), formed in situ. All tested complexes expressed greater anticancer activities and were less toxic towards noncancerous cells than cisplatin. Cobalt complexes (1 and 2) combined high cytotoxicity with selectivity towards cancer cells and caused massive tumour cell death. The vanadium complex (3) induced apoptosis specifically in cancer cells and targeted proteins, controlling their invasive and metastatic properties. The presented experimental data and computational prediction of drug ability of coordination compounds may be helpful for designing novel and less toxic metal-based anticancer species with high specificities towards tumour cells.  相似文献   

20.
Application of the carbon-13 (13C) tracer technique to soil organic carbon emission is relatively new to many researchers and only a few results have been reported to date. This mini-review paper cites some well-documented research in organic carbon pool studies using the 13C tracer technique. The 13C abundance in soil usually remains at a stable level under a set of natural conditions. Variations in 13C reflect different sources and types of organic components from natural environments. An important feature of 13C discrimination in the soil C pool has permitted researchers to assess the dynamic nature of the pool. This discrimination may reflect a selective preference at early stage of residue decomposition by soil microbes. Crop rotation and residue input to humic substances can change the 13C abundance, which is a possible way to estimate soil C emission. However, the dynamic relationship between 13C abundance in the soil C pool and C emission is still in an early stage of development. Restrictions due to requirement of long-term experiments and duration of vegetation changes may affect its wide-spread adoptions in C emission studies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号