首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Following the increase in life expectancy, the prevalence of Parkinson’s disease (PD) as the most common movement disorder is expected to rise. Despite the incredibly huge efforts in research to find the definitive biomarker, to date, the diagnosis of PD still relies mainly upon clinical symptoms. A wide range of treatments is available for PD, mainly alleviating the clinical symptoms. However, none of these current therapies can stop or even slow down the disease evolution. Hence, disease-modifying treatment is still a paramount unmet medical need. On the other side, bilirubin and its enzymatic machinery and precursors have offered potential benefits by targeting multiple mechanisms in chronic diseases, including PD. Nevertheless, only limited discussions are available in the context of neurological conditions, particularly in PD. Therefore, in this review, we profoundly discuss this topic to understand bilirubin’s therapeutical potential in PD.  相似文献   

2.
3.
Parkinson’s disease is one of the most common neurodegenerative disorders worldwide, characterized by a progressive loss of dopaminergic neurons mainly localized in the substantia nigra pars compacta. In recent years, the detailed analyses of both genetic and idiopathic forms of the disease have led to a better understanding of the molecular and cellular pathways involved in PD, pointing to the centrality of mitochondrial dysfunctions in the pathogenic process. Failure of mitochondrial quality control is now considered a hallmark of the disease. The peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family acts as a master regulator of mitochondrial biogenesis. Therefore, keeping PGC-1 level in a proper range is fundamental to guarantee functional neurons. Here we review the major findings that tightly bond PD and PGC-1s, raising important points that might lead to future investigations.  相似文献   

4.
Neurodegenerative disorders involve the slow and gradual degeneration of axons and neurons in the central nervous system (CNS), resulting in abnormalities in cellular function and eventual cellular demise. Patients with these disorders succumb to the high medical costs and the disruption of their normal lives. Current therapeutics employed for treating these diseases are deemed palliative. Hence, a treatment strategy that targets the disease’s cause, not just the symptoms exhibited, is desired. The synergistic use of nanomedicine and gene therapy to effectively target the causative mutated gene/s in the CNS disease progression could provide the much-needed impetus in this battle against these diseases. This review focuses on Parkinson’s and Alzheimer’s diseases, the gene/s and proteins responsible for the damage and death of neurons, and the importance of nanomedicine as a potential treatment strategy. Multiple genes were identified in this regard, each presenting with various mutations. Hence, genome-wide sequencing is essential for specific treatment in patients. While a cure is yet to be achieved, genomic studies form the basis for creating a highly efficacious nanotherapeutic that can eradicate these dreaded diseases. Thus, nanomedicine can lead the way in helping millions of people worldwide to eventually lead a better life.  相似文献   

5.
Alzheimer’s disease is a neurodegenerative disorder associated with age, and is characterized by pathological markers such as amyloid-beta plaques and neurofibrillary tangles. Symptoms of AD include cognitive impairments, anxiety and depression. It has also been shown that individuals with AD have impaired neurotransmission, which may result from the accumulation of amyloid plaques and neurofibrillary tangles. Preclinical studies showed that melatonin, a monoaminergic neurotransmitter released from the pineal gland, is able to ameliorate AD pathologies and restore cognitive impairments. Theoretically, inhibition of the pathological progression of AD by melatonin treatment should also restore the impaired neurotransmission. This review aims to explore the impact of AD on neurotransmission, and whether and how melatonin can enhance neurotransmission via improving AD pathology.  相似文献   

6.
In this review, we focus on the emerging roles of microglia in the brain, with particular attention to synaptic plasticity in health and disease. We present evidence that ramified microglia, classically believed to be “resting” (i.e., inactive), are instead strongly implicated in dynamic and plastic processes. Indeed, there is an intimate relationship between microglia and neurons at synapses which modulates activity-dependent functional and structural plasticity through the release of cytokines and growth factors. These roles are indispensable to brain development and cognitive function. Therefore, approaches aimed at maintaining the ramified state of microglia might be critical to ensure normal synaptic plasticity and cognition. On the other hand, inflammatory signals associated with Alzheimer’s disease are able to modify the ramified morphology of microglia, thus leading to synapse loss and dysfunction, as well as cognitive impairment. In this context, we highlight microglial TREM2 and CSF1R as emerging targets for disease-modifying therapy in Alzheimer’s disease (AD) and other neurodegenerative disorders.  相似文献   

7.
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by severe brain damage and dementia. There are currently few therapeutics to treat this disease, and they can only temporarily alleviate some of the symptoms. The pathogenesis of AD is mainly preceded by accumulation of abnormal amyloid beta (Aβ) aggregates, which are toxic to neurons. Therefore, modulation of the formation of these abnormal aggregates is strongly suggested as the most effective approach to treat AD. In particular, numerous studies on natural products associated with AD, aiming to downregulate Aβ peptides and suppress the formation of abnormal Aβ aggregates, thus reducing neural cell death, are being conducted. Generation of Aβ peptides can be prevented by targeting the secretases involved in Aβ-peptide formation (secretase-dependent). Additionally, blocking the intra- and intermolecular interactions of Aβ peptides can induce conformational changes in abnormal Aβ aggregates, whereby the toxicity can be ameliorated (structure-dependent). In this review, AD-associated natural products which can reduce the accumulation of Aβ peptides via secretase- or structure-dependent pathways, and the current clinical trial states of these products are discussed.  相似文献   

8.
9.
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. Metabolic disorders including obesity and type 2 diabetes mellitus (T2DM) may stimulate amyloid β (Aβ) aggregate formation. AD, obesity, and T2DM share similar features such as chronic inflammation, increased oxidative stress, insulin resistance, and impaired energy metabolism. Adiposity is associated with the pro-inflammatory phenotype. Adiposity-related inflammatory factors lead to the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of the pro-inflammatory cytokines including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Activation of the inflammasome complex, particularly NLRP3, has a crucial role in obesity-induced inflammation, insulin resistance, and T2DM. The abnormal activation of the NLRP3 signaling pathway influences neuroinflammatory processes. NLRP3/IL-1β signaling could underlie the association between adiposity and cognitive impairment in humans. The review includes a broadened approach to the role of obesity-related diseases (obesity, low-grade chronic inflammation, type 2 diabetes, insulin resistance, and enhanced NLRP3 activity) in AD. Moreover, we also discuss the mechanisms by which the NLRP3 activation potentially links inflammation, peripheral and central insulin resistance, and metabolic changes with AD.  相似文献   

10.
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.  相似文献   

11.
Parkinson’s disease (PD) is a neurodegenerative disease caused by loss of dopaminergic neurons in the midbrain. PD is clinically characterized by a variety of motor and nonmotor symptoms, and treatment relies on dopaminergic replacement. Beyond a common pathological hallmark, PD patients may present differences in both clinical progression and response to drug therapy that are partly affected by genetic factors. Despite extensive knowledge on genetic variability of dopaminergic receptors (DR), few studies have addressed their relevance as possible influencers of clinical heterogeneity in PD patients. In this review, we summarized available evidence regarding the role of genetic polymorphisms in DR as possible determinants of PD development, progression and treatment response. Moreover, we examined the role of DR in the modulation of peripheral immunity, in light of the emerging role of the peripheral immune system in PD pathophysiology. A better understanding of all these aspects represents an important step towards the development of precise and personalized disease-modifying therapies for PD.  相似文献   

12.
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.  相似文献   

13.
The most common cause of dementia, especially in elderly people, is Alzheimer’s disease (AD), with aging as its main risk factor. AD is a multifactorial neurodegenerative disease. There are several factors increasing the risk of AD development. One of the main features of Alzheimer’s disease is impairment of brain energy. Hypometabolism caused by decreased glucose uptake is observed in specific areas of the AD-affected brain. Therefore, glucose hypometabolism and energy deficit are hallmarks of AD. There are several hypotheses that explain the role of glucose hypometabolism in AD, but data available on this subject are poor. Reduced transport of glucose into neurons may be related to decreased expression of glucose transporters in neurons and glia. On the other hand, glucose transporters may play a role as potential targets for the treatment of AD. Compounds such as antidiabetic drugs, agonists of SGLT1, insulin, siRNA and liposomes are suggested as therapeutics. Nevertheless, the suggested targets of therapy need further investigations.  相似文献   

14.
Lithium is the prototype mood-stabilizer used for acute and long-term treatment of bipolar disorder. Cumulated translational research of lithium indicated the drug’s neuroprotective characteristics and, thereby, has raised the option of repurposing it as a drug for neurodegenerative diseases. Lithium’s neuroprotective properties rely on its modulation of homeostatic mechanisms such as inflammation, mitochondrial function, oxidative stress, autophagy, and apoptosis. This myriad of intracellular responses are, possibly, consequences of the drug’s inhibition of the enzymes inositol-monophosphatase (IMPase) and glycogen-synthase-kinase (GSK)-3. Here we review lithium’s neurobiological properties as evidenced by its neurotrophic and neuroprotective properties, as well as translational studies in cells in culture, in animal models of Alzheimer’s disease (AD) and in patients, discussing the rationale for the drug’s use in the treatment of AD.  相似文献   

15.
Chronic neurodegenerative diseases are complex, and their pathogenesis is uncertain. Alzheimer’s disease (AD) is a neurodegenerative brain alteration that is responsible for most dementia cases in the elderly. AD etiology is still uncertain; however, chronic neuroinflammation is a constant component of brain pathology. Infections have been associated with several neurological diseases and viruses of the Herpes family appear to be a probable cause of AD neurodegenerative alterations. Several different factors may contribute to the AD clinical progression. Exogeneous viruses or other microbes and environmental pollutants may directly induce neurodegeneration by activating brain inflammation. In this paper, we suggest that exogeneous brain insults may also activate retrotransposons and silent human endogenous retroviruses (HERVs). The initial inflammation of small brain areas induced by virus infections or other brain insults may activate HERV dis-regulation that contributes to neurodegenerative mechanisms. Chronic HERV activation in turn may cause progressive neurodegeneration that thereafter merges in cognitive impairment and dementia in genetically susceptible people. Specific treatment for exogenous end endogenous pathogens and decreasing pollutant exposure may show beneficial effect in early intervention protocol to prevent the progression of cognitive deterioration in the elderly.  相似文献   

16.
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. It is hypothesized to develop due to the dysfunction of two major proteins, amyloid-β (Aβ) and microtubule-associated protein, tau. Evidence supports the involvement of cholesterol changes in both the generation and deposition of Aβ. This study was performed to better understand the role of liver cholesterol and bile acid metabolism in the pathophysiology of AD. We used male and female wild-type control (C57BL/6J) mice to compare to two well-characterized amyloidosis models of AD, APP/PS1, and AppNL-G-F. Both conjugated and unconjugated primary and secondary bile acids were quantified using UPLC-MS/MS from livers of control and AD mice. We also measured cholesterol and its metabolites and identified changes in levels of proteins associated with bile acid synthesis and signaling. We observed sex differences in liver cholesterol levels accompanied by differences in levels of synthesis intermediates and conjugated and unconjugated liver primary bile acids in both APP/PS1 and AppNL-G-F mice when compared to controls. Our data revealed fundamental deficiencies in cholesterol metabolism and bile acid synthesis in the livers of two different AD mouse lines. These findings strengthen the involvement of liver metabolism in the pathophysiology of AD.  相似文献   

17.
Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer’s disease (AD), Parkinson’s disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt–Jakob disease (CJD) and Gerstmann–Sträussler–Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aβ peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field.  相似文献   

18.
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD.  相似文献   

19.
Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), are the strongest known genetic risk factor for Parkinson’s disease (PD). The molecular mechanisms underlying the increased PD risk and the variable phenotypes observed in carriers of different GBA mutations are not yet fully elucidated. Extracellular vesicles (EVs) have gained increasing importance in neurodegenerative diseases since they can vehiculate pathological molecules potentially promoting disease propagation. Accumulating evidence showed that perturbations of the endosomal–lysosomal pathway can affect EV release and composition. Here, we investigate the impact of GCase deficiency on EV release and their effect in recipient cells. EVs were purified by ultracentrifugation from the supernatant of fibroblast cell lines derived from PD patients with or without GBA mutations and quantified by nanoparticle tracking analysis. SH-SY5Y cells over-expressing alpha-synuclein (α-syn) were used to assess the ability of patient-derived small EVs to affect α-syn expression. We observed that defective GCase activity promotes the release of EVs, independently of mutation severity. Moreover, small EVs released from PD fibroblasts carrying severe mutations increased the intra-cellular levels of phosphorylated α-syn. In summary, our work shows that the dysregulation of small EV trafficking and alpha-synuclein mishandling may play a role in GBA-associated PD.  相似文献   

20.
Calcium signaling is essential for neuronal function, and its dysregulation has been implicated across neurodegenerative diseases, including Alzheimer’s disease (AD). A close reciprocal relationship exists between calcium signaling and mitochondrial function. Growing evidence in a variety of AD models indicates that calcium dyshomeostasis drastically alters mitochondrial activity which, in turn, drives neurodegeneration. This review discusses the potential pathogenic mechanisms by which calcium impairs mitochondrial function in AD, focusing on the impact of calcium in endoplasmic reticulum (ER)–mitochondrial communication, mitochondrial transport, oxidative stress, and protein homeostasis. This review also summarizes recent data that highlight the need for exploring the mechanisms underlying calcium-mediated mitochondrial dysfunction while suggesting potential targets for modulating mitochondrial calcium levels to treat neurodegenerative diseases such as AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号