首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine bacteria contribute significantly towards the fouling consortium, both directly (modern foul release coatings fail to prevent “slime” attachment) and indirectly (biofilms often excrete chemical cues that attract macrofouling settlement). This study assessed the natural product anti-biofilm performance of an extract of the seaweed, Chondrus crispus, and two isolated compounds from terrestrial sources, (+)-usnic acid and juglone, against two marine biofilm forming bacteria, Cobetia marina and Marinobacter hydrocarbonoclasticus. Bioassays were developed using quantitative imaging and fluorescent labelling to test the natural products over a range of concentrations against initial bacterial attachment. All natural products affected bacterial attachment; however, juglone demonstrated the best anti-biofilm performance against both bacterial species at a concentration range between 5–20 ppm. In addition, for the first time, a dose-dependent inhibition (hormetic) response was observed for natural products against marine biofilm forming bacteria.  相似文献   

2.
Plant extracts are complex matrices and, although crude extracts are widely in use, purified compounds are pivotal in drug discovery. This study describes the application of automated preparative-HPLC combined with a rapid off-line bacterial bioassay, using reduction of a tetrazolium salt as an indicator of bacterial metabolism. This approach enabled the identification of fractions from Dodonaea viscosa that were active against Staphylococcus aureus and Escherichia coli, which, ultimately, resulted in the identification of a clerodane type diterpenoid, 6β-hydroxy-15,16-epoxy-5β, 8β, 9β, 10α-cleroda-3, 13(16), 14-trien-18-oic acid, showing bacteriostatic activity (minimum inhibitory concentration (MIC) = 64–128 µg/mL) against test bacteria. To the best of our knowledge, this is the first report on antibacterial activity of this metabolite from D. viscosa.  相似文献   

3.
The gene agaA, of the isolated marine bacterium Pseudomonas vesicularis MA103, comprised 2958-bp nucleotides encoding a putative agarase AgaA of 985 amino acids, which was predicted to contain a signal peptide of 29 amino acids in the N-terminus, a catalytic domain of glycoside hydrolase 16 (GH16) family, a bacterial immunoglobulin group 2 (Big 2), and three carbohydrate binding modules 6 (CBM 6). The gene agaA was cloned and overexpressed in Escherichia coli, and the optimum temperatures for AgaA overexpression were 16, 20 and 24 °C. The agaA was cloned without its signal peptide for cytosolic production overexpression, whereas it was cloned with the heterologous signal peptide PelB and its endogenous signal peptide for periplasmic and extracellular productions, respectively. Extracellular and periplasmic rAgaA showed greater activity than that of cytosolic rAgaA, indicating that membrane translocation of AgaA may encourage proper protein folding. Time-course hydrolysis of agarose by rAgaA was accomplished and the products were analyzed using thin layer chromatography and matrix-assisted laser desorption inoization-time of flight mass spectrometry, indicating that AgaA from P. vesicularis was an endo-type β-1,4 agarase that cleaved agarose into neoagarotetraose and neoagarohexaose as the final products.  相似文献   

4.
Interest has grown in harnessing biological agents for cancer treatment as dynamic vectors with enhanced tumor targeting. While bacterial traits such as proliferation in tumors, modulation of an immune response, and local secretion of toxins have been well studied, less is known about bacteria as competitors for nutrients. Here, we investigated the use of a bacterial strain as a living iron chelator, competing for this nutrient vital to tumor growth and progression. We established an in vitro co-culture system consisting of the magnetotactic strain Magnetospirillum magneticum AMB-1 incubated under hypoxic conditions with human melanoma cells. Siderophore production by 108 AMB-1/mL in human transferrin (Tf)-supplemented media was quantified and found to be equivalent to a concentration of 3.78 µM ± 0.117 µM deferoxamine (DFO), a potent drug used in iron chelation therapy. Our experiments revealed an increased expression of transferrin receptor 1 (TfR1) and a significant decrease of cancer cell viability, indicating the bacteria’s ability to alter iron homeostasis in human melanoma cells. Our results show the potential of a bacterial strain acting as a self-replicating iron-chelating agent, which could serve as an additional mechanism reinforcing current bacterial cancer therapies.  相似文献   

5.
Prevalences of Campylobacter (C.) jejuni infections are progressively rising globally. Given that probiotic feed additives, such as the commercial product Aviguard®, have been shown to be effective in reducing enteropathogens, such as Salmonella, in vertebrates, including livestock, we assessed potential anti-pathogenic and immune-modulatory properties of Aviguard® during acute C. jejuni-induced murine enterocolitis. Therefore, microbiota-depleted IL-10−/− mice were infected with C. jejuni strain 81-176 by gavage and orally treated with Aviguard® or placebo from day 2 to 4 post-infection. The applied probiotic bacteria could be rescued from the intestinal tract of treated mice, but with lower obligate anaerobic bacterial counts in C. jejuni-infected as compared to non-infected mice. Whereas comparable gastrointestinal pathogen loads could be detected in both groups until day 6 post-infection, Aviguard® treatment resulted in improved clinical outcome and attenuated apoptotic cell responses in infected large intestines during acute campylobacteriosis. Furthermore, less distinct pro-inflammatory immune responses could be observed not only in the intestinal tract, but also in extra-intestinal compartments on day 6 post-infection. In conclusion, we show here for the first time that Aviguard® exerts potent disease-alleviating effects in acute C. jejuni-induced murine enterocolitis and might be a promising probiotic treatment option for severe campylobacteriosis in humans.  相似文献   

6.
CpdB is a 3′-nucleotidase/2′3′-cyclic nucleotide phosphodiesterase, active also with reasonable efficiency on cyclic dinucleotides like c-di-AMP (3′,5′-cyclic diadenosine monophosphate) and c-di-GMP (3′,5′-cyclic diadenosine monophosphate). These are regulators of bacterial physiology, but are also pathogen-associated molecular patterns recognized by STING to induce IFN-β response in infected hosts. The cpdB gene of Gram-negative and its homologs of gram-positive bacteria are virulence factors. Their protein products are extracytoplasmic enzymes (either periplasmic or cell–wall anchored) and can hydrolyze extracellular cyclic dinucleotides, thus reducing the innate immune responses of infected hosts. This makes CpdB(-like) enzymes potential targets for novel therapeutic strategies in infectious diseases, bringing about the necessity to gain insight into the molecular bases of their catalytic behavior. We have dissected the two-domain structure of Escherichia coli CpdB to study the role of its N-terminal and C-terminal domains (CpdB_Ndom and CpdB_Cdom). The specificity, kinetics and inhibitor sensitivity of point mutants of CpdB, and truncated proteins CpdB_Ndom and CpdB_Cdom were investigated. CpdB_Ndom contains the catalytic site, is inhibited by phosphate but not by adenosine, while CpdB_Cdom is inactive but contains a substrate-binding site that determines substrate specificity and adenosine inhibition of CpdB. Among CpdB substrates, 3′-AMP, cyclic dinucleotides and linear dinucleotides are strongly dependent on the CpdB_Cdom binding site for activity, as the isolated CpdB_Ndom showed much-diminished activity on them. In contrast, 2′,3′-cyclic mononucleotides and bis-4-nitrophenylphosphate were actively hydrolyzed by CpdB_Ndom, indicating that they are rather independent of the CpdB_Cdom binding site.  相似文献   

7.
The phenol-degrading efficiency of Pseudochrobactrum sp. was enhanced by ultraviolet (UV) irradiation. First, a bacterial strain, Pseudochrobactrum sp. XF1, was isolated from the activated sludge in a coking plant. It was subjected to mutation by UV radiation for 120 s and a mutant strain with higher phenol-degrading efficiency, Pseudochrobactrum sp. XF1-UV, was selected. The mutant strain XF1-UV was capable of degrading 1800 mg/L phenol completely within 48 h and had higher tolerance to hydrogen ion concentration and temperature variation than the wild type. Haldane’s kinetic model was used to fit the exponential growth data and the following kinetic parameters were obtained: μmax = 0.092 h−1, Ks = 22.517 mg/L, and Ki = 1126.725 mg/L for XF1, whereas μmax = 0.110 h−1, Ks = 23.934 mg/L, and Ki = 1579.134 mg/L for XF1-UV. Both XF1 and XF1-UV degraded phenol through the ortho-pathway; but the phenol hydroxylase activity of XF1-UV1 was higher than that of XF1, therefore, the mutant strain biodegraded phenol faster. Taken together, our results suggest that Pseudochrobactrum sp. XF1-UV could be a promising candidate for bioremediation of phenol-containing wastewaters.  相似文献   

8.
In this work, we studied the antimicrobial properties of a nanocomposite system based on a lactose-substituted chitosan and silver nanoparticles: Chitlac-nAg. Twofold serial dilutions of the colloidal Chitlac-nAg solution were both tested on Streptococcus mitis, Streptococcus mutans, and Streptococcus oralis planktonic phase and biofilm growth mode as well as on saliva samples. The minimum inhibitory and bactericidal concentrations of Chitlac-nAg were evaluated together with its effect on sessile cell viability, as well as both on biofilm formation and on preformed biofilm. In respect to the planktonic bacteria, Chitlac-nAg showed an inhibitory/bactericidal effect against all streptococcal strains at 0.1% (v/v), except for S. mitis ATCC 6249 that was inhibited at one step less. On preformed biofilm, Chitlac-nAg at a value of 0.2%, was able to inhibit the bacterial growth on the supernatant phase as well as on the mature biofilm. For S. mitis ATCC 6249, the biofilm inhibitory concentration of Chitlac-nAg was 0.1%. At sub-inhibitory concentrations, the Streptococcal strains adhesion capability on a polystyrene surface showed a general reduction following a concentration-dependent-way; a similar effect was obtained for the metabolic biofilm activity. From these results, Chitlac-nAg seems to be a promising antibacterial and antibiofilm agent able to hinder plaque formation.  相似文献   

9.
10.
This study evaluates the electrical potential and chemical alterations in laboratory-induced colistin-resistant Klebsiella pneumoniae, as compared to the susceptible strain using spectroscopic analyses. The minimal inhibitory concentration (MIC) of colistin, ζ-potential and chemical composition analysis of K. pneumoniae strains are determined. The results obtained for the K. pneumoniaeCol-R with induced high-level colistin resistance (MIC = 16.0 ± 0.0 mg/L) are compared with the K. pneumoniaeCol-S strain susceptible to colistin (MIC = 0.25 ± 0.0 mg/L). Fourier transform infrared (FTIR) and Raman spectroscopic studies revealed differences in bacterial cell wall structures and lipopolysaccharide (LPS) of K. pneumoniaeCol-R and K. pneumoniaeCol-S strains. In the beginning, we assumed that the obtained results could relate to a negative charge of the bacterial surface and different electrostatic interactions with cationic antibiotic molecules, reducing the affinity of colistin and leading to its lower penetration into K. pneumoniaeCol-R cell. However, no significant differences in the ζ-potential between the K. pneumoniaeCol-R and K. pneumoniaeCol-S strains are noticed. In conclusion, this mechanism is most probably associated with recognisable changes in the chemical composition of the K. pneumoniaeCol-R cell wall (especially in LPS) when compared to the susceptible strain.  相似文献   

11.
In this work, Fe3O4@SiO2 nanoparticles were coated with mesoporous silica shell by SN+I pathway by using anionic surfactant (S) and co-structure directing agent (N+). The role of co-structure directing agent (CSDA) is to assist the electrostatic interaction between negatively charged silica layers and the negatively charged surfactant molecules. Prior to the mesoporous shell formation step, magnetic cores were coated with a dense silica layer to prevent iron oxide cores from leaching into the mother system under any acidic circumstances. However, it was found that both dense and mesoporous coating parameters affect the textural properties of the produced mesoporous silica shell (i.e., surface area, pore volume and shell thickness). The synthesized Fe3O4@SiO2@m-SiO2 (MCMSS) nanoparticles have been characterized by low-angle X-ray diffraction, transmission electron microscopy (TEM), and N2 adsorption-desorption analysis, and magnetic properties. The synthesized particles had dense and mesoporous silica shells of 8–37 nm and 26–50 nm, respectively. Furthermore, MCMSS possessed surface area of ca. 259–621 m2·g−1, and pore volume of ca. 0.216–0.443 cc·g−1. MCMSS showed docetaxcel cancer drug storage capacity of 25–33 w/w% and possessed control release from their mesochannels which suggest them as proper nanocarriers for docetaxcel molecules.  相似文献   

12.
The aim of this study was to characterize antimicrobial electrospun poly(vinyl alcohol) (PVA) nanofibers containing benzyl triethylammonium chloride (BTEAC) as an antimicrobial agent. The antimicrobial BTEAC-PVA nanofibers were prepared through electrospinning at the optimal conditions of 15 kV voltage and a 1.0 mL h 1 flow rate. Based on the minimum inhibitory concentration (MIC) test results against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumonia, BTEAC-PVA nanofibers containing 2.6% BTEAC were fabricated to test the antibacterial and antiviral activities. The average diameter of the BTEAC-PVA nanofibers increased from 175.7 to 464.7 nm with increasing BTEAC concentration from 0 to 2.6%. The antimicrobial activities of the BTEAC-PVA nanofibers were tested against bacteria. The antibacterial tests with 2.6% BTEAC-PVA nanofibers demonstrated that bacterial reduction in PVA nanofibers was similar to the control value, indicating that PVA had a minimal effect on bacteria death. For the BTEAC-PVA nanofibers, the bacterial reduction ratio increased with increasing contact time, demonstrating that BTEAC-PVA nanofibers successfully inhibited the growth of bacteria. In addition, the antiviral tests against viruses (bacteriophages MS2 and PhiX174) showed that the BTEAC-PVA nanofibers inactivated both MS2 and PhiX174.  相似文献   

13.
Fusarium wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense (FOC) represents a significant threat to banana (Musa spp.) production. Musa AAB is susceptible to Race 1 (FOC1) and Race 4 (FOC4), while Cavendish Musa AAA is found to be resistant to FOC1 but still susceptible to Race 4. A polygalacturonase (PGC3) was purified from the supernatant of Fusarium oxysporum f. sp. cubense race 4 (FOC4), which is the pathogen of Fusarium wilt. PGC3 had an apparent molecular weight of 45 kDa according to SDS-PAGE. The enzyme hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. The Km and Vmax values of PGC3 from FOC4 were determined to be 0.70 mg·mL−1 and 101.01 Units·mg·protein−1·min−1, respectively. Two pgc3 genes encoding PGC3 from FOC4 and FOC1, both genes of 1368 bp in length encode 456 amino-acid residues with a predicted signal peptide sequence of 21 amino acids. There are 16 nucleotide sites difference between FOC4-pgc3 and FOC1-pgc3, only leading to four amino acid residues difference. In order to obtain adequate amounts of protein required for functional studies, two genes were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC3, r-FOC1-PGC3 and r-FOC4-PGC3, were expressed and purified as active proteins. The optimal PGC3 activity was observed at 50 °C and pH 4.5. Both recombinant PGC3 retained >40% activity at pH 3–7 and >50% activity in 10–50 °C. Both recombinant PGC3 proteins could induce a response but with different levels of tissue maceration and necrosis in banana plants. In sum, our results indicate that PGC3 is an exo-PG and can be produced with full function in P. pastoris.  相似文献   

14.
Food search behavior in Arctic charr (Salvelinus alpinus) to extracts of granulated food was quantified and compared with the response to solutions of amino acid mixtures. The concentration of each of 18 amino acids was analyzed in the food extract and similar pure amino acid solutions were prepared. Earlier published electrophysiological data and the data of concentrations in the test area were used to order the amino acids with respect to their presumed contribution to the stimulatory effect of the food extract. The 18 amino acids were tested collectively (18 aa) or were divided into two groups, one group containing 7 amino acids (7 aa) which was presumed to have a high stimulatory effect and the other group containing the remaining 11 amino acids (11 aa). The solutions of 7, 11, and 18 aa were stimulatory at concentrations between 2 and 5 × 10–6 M, but no significant responses were observed at 2–5 × 10–9 M. This can be compared with the food extract which elicited response at all concentrations tested, i.e., the total concentrations of 18 amino acids were 5 × 10–9, 5 × 10–8, 5 × 10–7, and 5 × 10–6 M. The response to the 18 aa solution was compared with the food extract and was shown to be significantly lower at 5 × 10–9 M but not at 5 × 10–6 M. These results show that amino acids induce food search behavior in Arctic charr, but there are other substances which also contribute to the stimulatory effect of the food extract.  相似文献   

15.
Cranberry consumption has shown prophylactic effects against urinary tract infections (UTI), although the mechanisms involved are not completely understood. In this paper, cranberry phenolic compounds and their potential microbial-derived metabolites (such as simple phenols and benzoic, phenylacetic and phenylpropionic acids) were tested for their capacity to inhibit the adherence of uropathogenic Escherichia coli (UPEC) ATCC®53503™ to T24 epithelial bladder cells. Catechol, benzoic acid, vanillic acid, phenylacetic acid and 3,4-dihydroxyphenylacetic acid showed anti-adhesive activity against UPEC in a concentration-dependent manner from 100–500 µM, whereas procyanidin A2, widely reported as an inhibitor of UPEC adherence on uroepithelium, was only statistically significant (p < 0.05) at 500 µM (51.3% inhibition). The results proved for the first time the anti-adhesive activity of some cranberry-derived phenolic metabolites against UPEC in vitro, suggesting that their presence in the urine could reduce bacterial colonization and progression of UTI.  相似文献   

16.
Polyaniline (PANI) is one of the most studied conducting polymers. Its properties can be modified by controlling the way of protonation. Polyaniline base was immersed in aqueous solutions of 42 inorganic or organic acids in order to find out, which is able to constitute a salt with the PANI base and what are the properties of products. The conductivity of the reprotonated PANI bases is determined especially by the pH of acid solutions. The highest conductivity, 1.22 S cm−1, was found after reprotonation of PANI base with 50% tetrafluoroboric acid. The reaction with most strong inorganic acids yielded samples with a conductivity of 10−1 S cm−1. Sulfonic acids gave products having conductivity of the order of 10−2–10−1 S cm−1. Carboxylic acids were less efficient in protonation, and their ability to produce a conducting polymer depended on increasing the acid concentration. Acids containing an acidic hydroxyl group, like picric acid, also protonated PANI to a good level of conductivity. The lowest conductivity, 1.8 × 10−10 S cm−1, was observed in the absence of any acid. The density of reprotonated PANI varied between 1.19 and 2.06 g cm−3, the contact angle between 29° and 102°, and volume change between −14% and +33%, depending of the acid used. The reprotonation of PANI base with various acids offers the opportunity to prepare materials with great variability and versatility in properties.  相似文献   

17.
18.
Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1) was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w) milled corncob, 0.8% (w/w) NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1), the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate). Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE). ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB), remazol brilliant blue R and reactive blue 4 (RB4), at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.  相似文献   

19.
The oregano leaves’ extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl–methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV–Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.  相似文献   

20.
Low-molecular-weight organic ammonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Unfortunately, short-term functionality and high toxicity limit their clinical application. On the contrary, the equivalent macromolecular ammonium salts, derived from the polymerization of monomeric ammonium salts, have demonstrated improved antibacterial potency, a lower tendency to develop resistance, higher stability, long-term activity, and reduced toxicity. A water-soluble non-quaternary copolymeric ammonium salt (P7) was herein synthetized by copolymerizing 2-methoxy-6-(4-vinylbenzyloxy)-benzylammonium hydrochloride monomer with N, N-di-methyl-acrylamide. The antibacterial activity of P7 was assessed against several multidrug-resistant (MDR) clinical isolates of both Gram-positive and Gram-negative species. Except for colistin-resistant Pseudomonas aeruginosa, most isolates were susceptible to P7, also including some Gram-negative bacteria with a modified charge in the external membrane. P7 showed remarkable antibacterial activity against isolates of Enterococcus, Staphylococcus, Acinetobacter, and Pseudomonas, and on different strains of Escherichia coli and Stenotrophomonas maltophylia, regardless of their antibiotic resistance. The lowest minimal inhibitory concentrations (MICs) observed were 0.6–1.2 µM and the minimal bactericidal concentrations (MBC) were frequently overlapping with the MICs. In 24-h time–kill and turbidimetric studies, P7 displayed a rapid non-lytic bactericidal activity. P7 could therefore represent a novel and potent tool capable of counteracting infections sustained by several bacteria that are resistant to the presently available antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号