首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Heat‐shock protein 90 (Hsp90) is a molecular chaperone involved in the stabilization of key oncogenic signaling proteins, and therefore, inhibition of Hsp90 represents a new strategy in cancer therapy. 2‐Amino‐7‐[4‐fluoro‐2‐(3‐pyridyl)phenyl]‐4‐methyl‐7,8‐dihydro‐6H‐quinazolin‐5‐one oxime is a racemic Hsp90 inhibitor that targets the N‐terminal adenosine triphosphatase site. We developed a method to resolve the enantiomers and evaluated their inhibitory activity on Hsp90 and the consequent antitumor effects. The (S) stereoisomer emerged as a potent Hsp90 inhibitor in biochemical and cellular assays. In addition, this enantiomer exhibited high oral bioavailability in mice and excellent antitumor activity in two different human cancer xenograft models.  相似文献   

2.
The molecular chaperone Hsp90 supports the functional activity of specific substrate proteins (clients). For client processing, the Hsp90 dimer undergoes a series of ATP-driven conformational rearrangements. Flexible linkers connecting the three domains of Hsp90 are crucial to enable dynamic arrangements. The long charged linker connecting the N-terminal (NTD) and middle (MD) domains exhibits additional functions in vitro and in vivo. The structural basis for these functions remains unclear. Here, we characterize the conformation and dynamics of the linker and NTD−MD domain interactions by NMR spectroscopy. Our results reveal two regions in the linker that are dynamic and exhibit secondary structure conformation. We show that these regions mediate transient interactions with strand β8 of the NTD. As a consequence, this strand detaches and exposes a hydrophobic surface patch, which enables binding to the p53 client. We propose that the charged linker plays an important regulatory role by coupling the Hsp90 NTD−MD arrangement with the accessibility of a client binding site on the NTD.  相似文献   

3.
The α‐crystallin family of small heat shock proteins possesses chaperone activity in response to stress and is involved in several neurological, muscular, and ophthalmic pathologies. This family includes the vertebrate lens protein α‐crystallin, associated with cataract disease. In this study, by combining small‐angle X‐ray and light scattering techniques, the structure and shape of α‐crystallin was revealed in its native state and after a transition caused by heat stress. Below critical temperature (Tc), α‐crystallin appears as an ellipsoid with a central cavity; whereas at high temperatures the cavity almost disappears, and the protein rearranges its structure, increasing the solvent‐exposed surface while retaining the ellipsoidal symmetry. Contextually, at Tc, α‐crystallin chaperone binding shows an abrupt increase. By modelling the chaperone activity as the formation of a complex composed of α‐crystallin and an aggregating substrate, it was demonstrated that the increase of α‐crystallin‐exposed surface is directly responsible for its gain in chaperone functionality.  相似文献   

4.
Inhibition of the molecular chaperone heat shock protein 90 (Hsp90) represents a promising approach for cancer treatment. BIIB021 is a highly potent Hsp90 inhibitor with remarkable anticancer activity; however, its clinical application is limited by lack of potency and response. In this study, we aimed to investigate the impact of replacing the hydrophobic moiety of BIIB021, 4-methoxy-3,5-dimethylpyridine, with various five-membered ring structures on the binding to Hsp90. A focused array of N7/N9-substituted purines, featuring aromatic and non-aromatic rings, was designed, considering the size of hydrophobic pocket B in Hsp90 to obtain insights into their binding modes within the ATP binding site of Hsp90 in terms of π–π stacking interactions in pocket B as well as outer α-helix 4 configurations. The target molecules were synthesized and evaluated for their Hsp90α inhibitory activity in cell-free assays. Among the tested compounds, the isoxazole derivatives 6b and 6c, and the sole six-membered derivative 14 showed favorable Hsp90α inhibitory activity, with IC50 values of 1.76 µM, 0.203 µM, and 1.00 µM, respectively. Furthermore, compound 14 elicited promising anticancer activity against MCF-7, SK-BR-3, and HCT116 cell lines. The X-ray structures of compounds 4b, 6b, 6c, 8, and 14 bound to the N-terminal domain of Hsp90 were determined in order to understand the obtained results and to acquire additional structural insights, which might enable further optimization of BIIB021.  相似文献   

5.
Computational studies of allosteric interactions have witnessed a recent renaissance fueled by growing interest in the modeling of complex molecular assemblies and biological networks. Allosteric interactions of the molecular chaperone Hsp90 with a diverse array of cochaperones and client proteins allow for molecular communication in signal transduction networks. In this review, recent developments in the understanding of allosteric interactions in the context of structural, functional, and computational studies of the Hsp90 chaperone are discussed. A comprehensive analysis of structural and network-based models of protein allostery is provided. Computational and experimental approaches and advances in the understanding of Hsp90 interactions and regulatory mechanisms are reviewed to provide a systematic and critical view of the current progress and most challenging questions in the field. The current status and future prospects for translational research, bridging the basic science of chaperones with the discovery of anti-cancer therapies, are also highlighted.  相似文献   

6.
7.
By replacement of an acetate with propionate through organic synthesis a range of zearalenone analogues were prepared. As key steps in the synthesis of the analogues we used the Noyori hydrogenation of methyl acetoacetate followed by Frater alkylation of the enantiomeric 3‐hydroxybutyrates. This converted the second acetate to a propionate. Through the derived alkyne, chain extension led to 3‐methylundec‐10‐en‐2‐ol derivatives. These were condensed with 2,4‐dimethoxy‐6‐vinylbenzoic acid. Ring‐closing metathesis of the obtained esters led to macrolactones, which were deproteced to give the zearalenone analogues. Several of the analogues showed cytotoxicity against the L929 mouse fibroblast cell line comparable to zearalenone (9 μM ) itself. In the thermal‐shift assay, two analogues 35 and ent‐ 35 displayed stronger binding than the natural product geldanamycin to the chaperone Hsp90.  相似文献   

8.
Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy, due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and viability. Here, a novel series of Hsp90 inhibitors containing a quinolein‐2‐one scaffold was synthesized and evaluated in cell proliferation assays. Results from these structure–activity relationships studies enabled identification of the simplified 3‐aminoquinolein‐2‐one analogue 2 b (6BrCaQ), which manifests micromolar activity against a panel of cancer cell lines. The molecular signature of Hsp90 inhibition was assessed by depletion of standard known Hsp90 client proteins. Finally, processing and activation of caspases 7, 8, and 9, and the subsequent cleavage of PARP by 6BrCaQ, suggest stimulation of apoptosis through both extrinsic and intrinsic pathways.  相似文献   

9.
Streptomyces hygroscopicus is a natural producer of geldanamycin. Mutasynthetic supplementation of an AHBA‐blocked mutant with all possible monofluoro 3‐aminobenzoic acids provided new fluorogeldanamycins. These showed strong antiproliferative activity and inhibitory effects on human heat shock protein Hsp90. Binding to Hsp90 in the low nanomolar range was determined from molecular modelling, AFM analysis and by calorimetric studies.  相似文献   

10.
11.
Several Streptomyces species are known to produce metabolites that inhibit plant pathogens. One such compound is geldanamycin (GA), a benzoquinone ansamycin originally isolated from Streptomyces hygroscopicus. We examined the effect of geldanamycin on egg hatch and juvenile motility in Caenorhabditis elegans and in two populations of the plant-parasitic nematode Heterodera glycines. When C. elegans eggs were exposed to geldanamycin, both hatch and motility were reduced by GA doses between 2 and 50 μg/ml. The H. glycines inbred populations TN17 and TN18 exhibited low dose stimulation of hatch and motility, whereas levels occurring at higher GA doses were at or below control levels. These experiments represent the first demonstration of geldanamycin effects in C. elegans and H. glycines and suggest that the heat shock chaperone Hsp90, the known molecular target of geldanamycin, may be involved in nematode egg hatch and motility. This study also indicates that geldanamycin-producing strains of Streptomyces may be useful as biocontrol agents for nematodes.  相似文献   

12.
Cellular chaperones that belong to the heat-shock protein 90 (Hsp90) family are a prerequisite for successful viral propagation for most viruses. The hepatitis C virus (HCV) uses Hsp90 for maturation, folding, and modification of viral proteins. Based on our previous discovery that marine alkaloid analogues with a 4,5,6,7-tetrahydrobenzo[1,2-d]thiazole-2-amine structure show inhibition of HCV replication and binding to Hsp90, a series of twelve novel compounds based on this scaffold was designed and synthesized. The aim was improved Hsp90 affinity and anti-HCV activity. Through structural optimization, improved binding to Hsp90 and specific HCV inhibition in genotype 1b and 2a replicon models was achieved for three compounds belonging to the newly synthesized series. Furthermore, these compounds efficiently inhibited replication of full-length HCV genotype 2a in a reporter virus RNA assay with IC50 values ranging from 0.03 to 0.6 μm .  相似文献   

13.
Early detection and discovery of new therapeutic targets are urgently needed to improve the breast cancer treatment outcome. Here we conducted an official clinical trial with cross-validation to corroborate human plasma Hsp90α as a novel breast cancer biomarker. Importantly, similar results were noticed in detecting early-stage breast cancer patients. Additionally, levels of plasma Hsp90α in breast cancer patients were gradually elevated as their clinical stages of regional lymph nodes advanced. In orthotopic breast cancer mouse models, administrating with recombinant Hsp90α protein increased both the primary tumor lymphatic vessel density and sentinel lymph node metastasis by 2 and 10 times, respectively. What is more, Hsp90α neutralizing antibody treatment approximately reduced 70% of lymphatic vessel density and 90% of sentinel lymph node metastasis. In the in vitro study, we demonstrated the role of extracellular Hsp90α (eHsp90α) as a pro-lymphangiogenic factor, which significantly enhanced migration and tube formation abilities of lymphatic endothelial cells (LECs). Mechanistically, eHsp90α signaled to the AKT pathway through low-density lipoprotein receptor-related protein 1 (LRP1) to upregulate the expression and secretion of CXCL8 in the lymphangiogenic process. Collectively, this study proves that plasma Hsp90α serves as an auxiliary diagnosis biomarker and eHsp90α as a molecular mediator promoting lymphangiogenesis in breast cancer.  相似文献   

14.
RNA interference (RNAi) holds great promise for the treatment of inherited and acquired diseases, provided that safe and efficient delivery systems are available. Herein we report that structurally flexible triethanolamine (TEA) core PAMAM dendrimers are able to deliver an Hsp27 siRNA effectively into prostate cancer (PC‐3) cells by forming stable nanoparticles with siRNA, protecting the siRNA nanoparticles from enzymatic degradation, and enhancing cellular uptake of siRNA. The Hsp27 siRNA resulted in potent and specific gene silencing of heat‐shock protein 27, an attractive therapeutic target in castrate‐resistant prostate cancer. Silencing of the hsp27 gene led to induction of caspase‐3/7‐dependent apoptosis and inhibition of PC‐3 cell growth in vitro. In addition, the siRNA–dendrimer complexes are non‐cytotoxic under the conditions used for siRNA delivery. Altogether, TEA core PAMAM dendrimer‐mediated siRNA delivery, in combination with RNAi that specifically targets Hsp27, may constitute a promising approach for combating castrate‐resistant prostate cancer, for which there is no efficacious treatment.  相似文献   

15.
Hsp90 is involved in correcting, folding, maturation and activation of a diverse array of client proteins; it has also been implicated in the treatment of cancer in recent years. In this work, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), molecular docking and molecular dynamics were performed on three different series of Hsp90 inhibitors to build 3D-QSAR models, which were based on the ligand-based or receptor-based methods. The optimum 3D-QSAR models exhibited reasonable statistical characteristics with averaging internal q(2) > 0.60 and external r(2) (pred) > 0.66 for Benzamide tetrahydro-4H-carbazol-4-one analogs (BT), AT13387 derivatives (AT) and Dihydroxylphenyl amides (DA). The results revealed that steric effects contributed the most to the BT model, whereas H-bonding was more important to AT, and electrostatic, hydrophobic, H-bond donor almost contributed equally to the DA model. The docking analysis showed that Asp93, Tyr139 and Thr184 in Hsp90 are important for the three series of inhibitors. Molecular dynamics simulation (MD) further indicated that the conformation derived from docking is basically consistent with the average structure extracted from MD simulation. These results not only lead to a better understanding of interactions between these inhibitors and Hsp90 receptor but also provide useful information for the design of new inhibitors with a specific activity.  相似文献   

16.
17.
New tetranuclear cationic metalla‐bowls 5 – 7 with the general formula [Ru4(p‐cymene)4(N∩N)2(OO∩OO)2]4+ (N∩N=2,6‐bis(N‐(4‐pyridyl carbamoyl)pyridine, OO∩OO=2,5‐dihydroxy‐1,4‐benzoquinonato ( 5 ), OO∩OO=5,8‐dioxydo‐1,4‐naphthaquinonato ( 6 ), OO∩OO=hoxonato ( 7 )) were prepared by the reaction of the respective dinuclear ruthenium complexes 2 – 4 with a bispyridine amide donor ligand 1 in methanol in the presence of AgO3SCF3.These new molecular metalla‐bowls were fully characterized by analytical techniques including elemental analysis as well as 1H and 13C NMR and HR‐ESI‐MS spectroscopy. The structure of metalla‐bowl 6 was determined from X‐ray crystal diffraction data. A UV/visible study was also carried out for the entire suite of new complexes. As with recent studies of similar arene–Ru complexes, the inhibition of cell growth by metalla‐bowls was established against SK‐hep‐1 (liver cancer), AGS (gastric cancer), and HCT‐15 (colorectal cancer) human cancer cell lines. Inhibition of cell growth by 6 was found to be considerably stronger against all cancer cell lines than the anticancer drugs, doxorubicin and cisplatin. In particular, in colorectal cancer cells, expression of the cancer suppressor genes APC and p53 was increased following exposure to 6 .  相似文献   

18.
The ClC-2 channel plays a critical role in maintaining ion homeostasis in the brain and the testis. Loss-of-function mutations in the ClC-2-encoding human CLCN2 gene are linked to the white matter disease leukodystrophy. Clcn2-deficient mice display neuronal myelin vacuolation and testicular degeneration. Leukodystrophy-causing ClC-2 mutant channels are associated with anomalous proteostasis manifesting enhanced endoplasmic reticulum (ER)-associated degradation. The molecular nature of the ER quality control system for ClC-2 protein remains elusive. In mouse testicular tissues and Leydig cells, we demonstrated that endogenous ClC-2 co-existed in the same protein complex with the molecular chaperones heat shock protein 90β (Hsp90β) and heat shock cognate protein (Hsc70), as well as the associated co-chaperones Hsp70/Hsp90 organizing protein (HOP), activator of Hsp90 ATPase homolog 1 (Aha1), and FK506-binding protein 8 (FKBP8). Further biochemical analyses revealed that the Hsp90β-Hsc70 chaperone/co-chaperone system promoted mouse and human ClC-2 protein biogenesis. FKBP8 additionally facilitated membrane trafficking of ClC-2 channels. Interestingly, treatment with the Hsp90-targeting small molecule 17-allylamino-17-demethoxygeldanamycin (17-AAG) substantially boosted ClC-2 protein expression. Also, 17-AAG effectively increased both total and cell surface protein levels of leukodystrophy-causing loss-of-function ClC-2 mutant channels. Our findings highlight the therapeutic potential of 17-AAG in correcting anomalous ClC-2 proteostasis associated with leukodystrophy.  相似文献   

19.
Oxidation of the neurotransmitter, dopamine (DA), is a pathological hallmark of Parkinson’s disease (PD). Oxidized DA forms adducts with proteins which can alter their functionality. αB-crystallin and Hsp27 are intracellular, small heat-shock molecular chaperone proteins (sHsps) which form the first line of defense to prevent protein aggregation under conditions of cellular stress. In vitro, the effects of oxidized DA on the structure and function of αB-crystallin and Hsp27 were investigated. Oxidized DA promoted the cross-linking of αB-crystallin and Hsp27 to form well-defined dimer, trimer, tetramer, etc., species, as monitored by SDS-PAGE. Lysine residues were involved in the cross-links. The secondary structure of the sHsps was not altered significantly upon cross-linking with oxidized DA but their oligomeric size was increased. When modified with a molar equivalent of DA, sHsp chaperone functionality was largely retained in preventing both amorphous and amyloid fibrillar aggregation, including fibril formation of mutant (A53T) α-synuclein, a protein whose aggregation is associated with autosomal PD. In the main, higher levels of sHsp modification with DA led to a reduction in chaperone effectiveness. In vivo, DA is sequestered into acidic vesicles to prevent its oxidation and, intracellularly, oxidation is minimized by mM levels of the antioxidant, glutathione. In vitro, acidic pH and glutathione prevented the formation of oxidized DA-induced cross-linking of the sHsps. Oxidized DA-modified αB-crystallin and Hsp27 were not cytotoxic. In a cellular context, retention of significant chaperone functionality by mildly oxidized DA-modified sHsps would contribute to proteostasis by preventing protein aggregation (particularly of α-synuclein) that is associated with PD.  相似文献   

20.
The hybrid organic‐inorganic structure based on glass/(TCO)/nanoporous ZnO/poly[2,7‐(9,9‐dioctylfluorene)‐alt‐(5,5′‐bithiophene)]/Ag that was prepared by physical deposition has been investigated. The structure of the nanostructured ZnO obtained by magnetron sputtering was confirmed by X‐ray diffractometry (XRD) and energy dispersive X‐ray spectroscopy (EDX). Scanning electron microscopy (SEM) analysis proved the existence of short and interconnected zinc oxide (ZnO) fibers, which form a continuous porous network with pores having an average diameter of 100 nm. Current‐voltage (I‐V) curves of the glass/TCO/ZnO/PF‐BT/Ag hybrid structure are similar to those of typical p‐n junctions and stable until 90°C temperature. According to the I‐V characteristics, the dominant mechanism of current flow is based on the generation‐recombination of carriers in the depletion region at low direct biases and also on the injection of carriers at high biases. The reverse branch of the I‐V characteristic, calculated in log‐log scale, shows one segment with a power coefficient of 3/2 at room temperature. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42415.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号