首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
二氧化钛(TiO2)具有比表面积大、孔隙结构丰富、性质稳定、制造成本低且无毒等特点,可作为吸附剂和光催化剂用于吸附处理含重金属、有机染料等污染物的废水。本工作通过对TiO2吸附废水中常见有机染料影响因素进行综合分析,综述了不同影响因素对吸附效果的影响,并讨论了复合改性、掺杂改性以及有机溶液改性等方式对TiO2吸附染料性能的影响,文献表明通过改性手段可丰富TiO2的孔隙结构,提高TiO2基吸附材料的比表面积,增加其表面的活性位点,进而改善其吸附性能。吸附动力学和热力学数据分析表明,TiO2吸附废水中有机染料过程中动力学主要遵循准二级动力学模型,热力学符合Langmuir模型单分子层吸附或Freundlich模型。其吸附机理主要包括静电吸引、n-π堆积相互作用、氢键等。TiO2体系作为吸附剂吸附处理废水中的染料分子,具有高效、环保、绿色经济的优势,可在今后的废水处理领域中起到至关重要的作用,可以作为一种具备广阔应用前景的绿色材料而展开研究。  相似文献   

2.
The large amount of dye wastewater requires efficient techniques, e.g., adsorption by activated carbon (AC), for removal of dyes to decrease water pollution. AC was modified by the basic ionic liquid 1‐butyl‐3‐methylimidazolium hydroxide. The surface functional groups of AC changed evidently as detected by Fourier transform infrared spectroscopy and Boehm titration. To evaluate the influence of functional group change on adsorption performance, AC and modified activated carbon (MAC) were employed to remove methylene blue. The results indicated an increase of adsorbance with lapse of contact time. The adsorption capability of AC was distinctly higher than that of MAC. From kinetic studies it follows that the pseudo‐second‐order kinetic model can well describe the adsorption process.  相似文献   

3.
Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650°C under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60°C),initial dye concentration(0–200 mg·L~(-1)),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H_2SO_4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl_2.The adsorption capacity of TSAC was found to be 11.98 mg·g~(-1)(RB5)and 13.27 mg·g~(-1)(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.  相似文献   

4.
纺织印染废水中的有机污染物如亚甲基蓝的高效吸附净化是环境领域的重要研究课题,三氧化钼独特的片层结构极具吸附应用潜力。通过微波一步法制备了不同氧空穴浓度的氧化钼,具有不同的表面电荷分布,利用氧空穴氧化钼表面所带负电荷选择性高效吸附阳离子偶氮染料亚甲基蓝。揭示了氧空穴浓度与吸附性能之间的关系,发现氧空穴浓度越高则氧化钼吸附速率越快;吸附过程符合Langmuir等温线模型和准二级动力学模型,表明该吸附过程属于单分子层吸附,并分析了其吸附机理。氧空穴氧化钼(MoO3- x )为金属氧化物在染料吸附领域的发展和应用提供一定的基础数据和理论基础。  相似文献   

5.
《分离科学与技术》2012,47(3):394-403
Batch and column adsorption experiments were conducted to investigate the removal of dyes from wastewater by water nut modified carbon (WNMC). Acidic pH was favorable for adsorption for Congo red dyes and basic pH was favorable for the adsorption for Malachite green dyes. The surface property of the sorbent was characterized by scanning electron microscopy and Fourier transform infrared techniques. The adsorption process was found to be endothermic and spontaneous. Different models of adsorption were used to describe the kinetics data and to calculate the corresponding rate constants of WNMC surfaces for dyes adsorption. A mechanism of dyes adsorption associating chemisorption processes is presented allowing the discussion of the variations in adsorption behavior of the material. These data suggested that WNMC are promising materials for dyes sorption. The data were in good agreement with bed depth service time model.  相似文献   

6.
This study concerns utilizing commonly available agricultural wastes like mustard stalk, jute stalk, sesame stalk, wheat straw, bagasse, and rice husk in a proper and efficient way. As a part of this research, activated carbon has been prepared from these wastes by a two-stage activation process with a carbonization stage up to 325°C as a first stage followed by chemical activation using zinc chloride as an activation agent. The effects of temperature, time, and impregnation ratio on activation have been studied. The batch adsorption technique has been utilized to obtain information for treating effluents from the dye industry. Methylene blue dye has been chosen as the standard. Adsorption data have been modeled using the Freundlich and Langmuir adsorption isotherms and first- and second-order kinetic equations and intraparticle diffusion model. Specific surface area was determined by the methylene blue spot test. The results indicate that such carbons can be employed as low-cost alternatives to expensive commercial activated carbon in wastewater treatment to remove water-soluble dyes.  相似文献   

7.
This study concerns utilizing commonly available agricultural wastes like mustard stalk, jute stalk, sesame stalk, wheat straw, bagasse, and rice husk in a proper and efficient way. As a part of this research, activated carbon has been prepared from these wastes by a two-stage activation process with a carbonization stage up to 325°C as a first stage followed by chemical activation using zinc chloride as an activation agent. The effects of temperature, time, and impregnation ratio on activation have been studied. The batch adsorption technique has been utilized to obtain information for treating effluents from the dye industry. Methylene blue dye has been chosen as the standard. Adsorption data have been modeled using the Freundlich and Langmuir adsorption isotherms and first- and second-order kinetic equations and intraparticle diffusion model. Specific surface area was determined by the methylene blue spot test. The results indicate that such carbons can be employed as low-cost alternatives to expensive commercial activated carbon in wastewater treatment to remove water-soluble dyes.  相似文献   

8.
《分离科学与技术》2012,47(10):1542-1551
In this paper, cold plasma (CPTAS), formaldehyde (FTAS), and microwave radiation treated (MTAS) acorn shell obtained from Quercus petraea tree as biosorbent was characterized and its dye removal ability at different dye concentrations was studied. The isoelectric point, functional groups and morphology of acorn shell was investigated as adsorbent surface characteristics. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and UV–Vis spectrophotometry were used. Methylene blue (MB) was used as model cationic dye. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms. The results indicated that the data for adsorption of MB onto treated acorn shell fitted well with the Langmuir isotherm model. Comparison of adsorption capacities of CPTAS with FTAS has shown a significant increase by as much as about 30 mg/g (33.32%) in MB adsorption.The pseudo-first order, pseudo-second order kinetic models were examined to evaluate the kinetic data, and the rate constants were calculated. Adsorption kinetic of dyes followed pseudo-first order kinetics. Thermodynamic parameters such as free energy, enthalpy, and entropy of dye adsorption were obtained. The results indicated that acorn shell could be used as a natural biosorbent for the removal of cationic dyes.  相似文献   

9.
《Ceramics International》2021,47(24):34751-34764
Photocatalysis with ecofriendly and low cost materials is attractive for degradation of organic pollutants without aid of strong reagents. In this regard, Au nanoparticle decorated ZnO nanorods (Au–ZnO) with good crystalline quality was synthesized by cost-effective and scalable hydrothermal method followed by photo-reduction of Au salt. This study addresses variation of photocatalytic degradation kinetics of different nature of dyes with various scavengers and pH conditions. Further, the process versatility is demonstrated by selective or simultaneous degradation of binary dye mixtures with optimized parameters. From Langmuir-Hinshelwood kinetic model, dye concentration range for first order limiting case was determined, and further validated from measured surface area of photocatalyst and change in dye absorbance before irradiation. Better adsorption with faster degradation exhibited by Methylene Blue (MB) dye showed efficient mineralization, revealed from chemical oxygen demand measurements. In Au–ZnO photocatalysis, generation of hydroxyl radical and its significant role in dye degradation was demonstrated using different scavengers. Variation of dye adsorption with pH dependent surface charge characteristics of photocatalyst resulted about one order higher degradation rate constant of MB at high pH. Strong pH dependent MB degradation is shown to be useful for its selective or simultaneous degradation with other dyes. Results of this study are useful for designing photo-reactors and these nanoparticles are efficient for degradation of different dyes, their combinations and industrial effluents under low power UV lamp for treatment different organic pollutants.  相似文献   

10.
Methylene blue dye was adsorbed on an adsorbent prepared from cashew nut shell. A batch adsorption study was carried out with variable adsorbent amount, initial dye concentration, contact time and pH. Studies showed that the pH of aqueous solutions affected dye removal as a result of removal efficiency increased with increasing solution pH. The experimental data were analyzed by the Langmuir, Freundlich, Redlich-Peterson, Koble-Corrigan, Toth, Temkin, Sips and Dubinin-Radushkevich models of adsorption using MATLAB 7.1. The experimental data yielded excellent fits within the following isotherm order: Redlich-Peterson>Toth>Sips>Koble-Corrigan>Langmuir>Temkin>Dubinin-Radushkevich>Freundlich, based on its correlation coefficient values. Three simplified kinetic models including a pseudofirst-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. It was shown that the adsorption of methylene blue could be described by the pseudo-second-order equation. The results indicate that cashew nut shell activated carbon could be employed as a low cost alternative to commercial activated carbon in the removal of dyes from wastewater.  相似文献   

11.
In this work, the application of Jatobá bark (the waste product of medicinal plant processing) in removal of the cationic dyes Methylene Blue, Crystal Violet and Rhodamine B from aqueous solution was studied in a batch system. The effect of contact time, pH and temperature on dye removal was investigated. An increase in pH from 2 to 10 was accompanied by an increase in the amount of dye adsorbed. The equilibrium sorption data fitted to the Langmuir, Freundlich and Langmuir–Freundlich equations were investigated. The Langmuir–Freundlich isotherm exhibited the best fit with the experimental data and the maximum adsorption capacities at room temperature being 211.5, 89.5 and 69.4 for Rhodamine B, Methylene Blue and Crystal Violet, respectively. The kinetic sorption was evaluated by the pseudo‐first‐order, pseudo‐second‐order and intraparticle diffusion models. It was observed that sorption follows the pseudo‐second‐order kinetic model. The thermodynamic parameters for the sorption process were also determined. The spontaneous and endothermic nature of adsorption was obtained based on the negative value of free energy (ΔG) and the positive value of enthalpy (ΔH). The results indicate that Jatobá bark could be used as a low‐cost material for the removal of cationic dyes from wastewater.  相似文献   

12.
The surface chemistry of a commercial activated carbon has been selectively modified, without changing significantly its textural properties, by means of chemical treatments, using HNO3, H2O2, NH3, and thermal treatments under a flow of H2 or N2. The resultant samples were characterized in terms of their surface chemistry and textural properties, and subsequently tested in the removal of different classes of dyes. It was shown that the surface chemistry of the activated carbon plays a key role in dye adsorption performance. The basic sample obtained by thermal treatment under H2 flow at 700 °C is the best material for the adsorption of most of the dyes tested. For anionic dyes (reactive, direct and acid) a close relationship between the surface basicity of the adsorbents and dye adsorption was shown, the interaction between the oxygen-free Lewis basic sites and the free electrons of the dye molecule being the main adsorption mechanism. For cationic dyes (basic) the acid oxygen-containing surface groups show a positive effect but thermally treated samples still present good performances, showing the existence of two parallel adsorption mechanisms involving electrostatic and dispersive interactions. The conclusions obtained for each dye individually were confirmed in the colour removal from a real textile process effluent.  相似文献   

13.
Domestic bentonite clay was modified using cationic surfactant – hexadecyltrimethylammonium bromide (HDTMA‐bromide) in order to obtain more efficient sorbent. Removal of Acid Orange 10 from aqueous solution at different dye concentrations, adsorbent doses, and pH was studied. These studies were carried out under unaltered pH value in order to prove that adjusting pH as an additional operation in wastewater treatment is not entirely necessary. The results obtained confirmed the adsorption capacity is significant even for unaltered pH. The adsorption isotherm data were well fitted with both the Freundlich and Langmuir model and the latter was shown as more appropriate. Dynamical data were well represented with the pseudo second‐order kinetic model. The results indicate that HDTMA‐bentonite could be employed as low‐cost sorbent in textile dye wastewater treatment.  相似文献   

14.
Textile dyes are some of the pollutants which have received the most attention because of the large volume of wastewater generated by the textile industry. Removal by means of adsorption is one of the most versatile alternatives to treat these effluents. Even though different adsorbents such as activated carbons and mineral materials have been proposed, polymeric adsorbents are a viable alternative. This work reports for the first time the use of polyelectrolyte PTZ and macroelectrolyte MTZ containing tetrazole groups as adsorbents useful in the textile dyes removal present in aqueous solutions and wastewater. Because of the anionic character of the tetrazole group, MTZ exhibits selective adsorption capabilities for cationic dyes of up to 156.25mg·g-1. The kinetic study of the process of adsorption shows that PTZ and MTZ fit a pseudo second-order model. MTZ also shows utility as a flocculant agent in the treatment of wastewater containing dyes Indigo Blue and Reactive Black. The results showed that PTZ and MTZ may be used in the treatment of wastewater in a process of coagulation-flocculation followed by the treatment by adsorption. This two-stage treatment removed up to 95% of the dye present in the wastewater. As well as removing the dyes, the values for COD, suspended solids, pH, and color of the wastewater decreased, thus significantly improving its quality.  相似文献   

15.
This study used olive stone-based activated carbon for the removal of methylene blue from wastewater in order to evaluate the adsorption capacity of the carbon. The equilibrium and kinetics of adsorption were examined at 25°, 30°, 35° and 40 °C and several agitation speeds. Type III adsorption isotherms corresponding to physical adsorption in a multilayer system were used for the methylene blue system. The equilibrium data for methylene blue adsorption showed a good fit to the Freundlich equation. The kinetic data was analysed to determine kinetic constants and order of reaction. Kinetics was evaluated by means of an n-order model, showing that the reaction was a first-order reaction. The results indicated that olive stone-based activated carbon could be used as a low-cost alternative to commercial activated carbon for the removal of organic compounds from wastewater. However, due to its microporosity, the application of this type of activated carbon was found to be suitable for molecules smaller than methylene blue.  相似文献   

16.
In the present work, a magnetized multiwalled carbon nanotube dispersed in chemically cross-linked gaur gum was developed as a nano-composite adsorbent material for the removal of dye from wastewater. The gaur gum, a bio-macromolecule was chemically modified by cross-linking with methylene bis-acrylamide in the presence of sodium hydroxide as a novel approach to prepare the gel matrix. The magnetite nanoparticles loaded multiwalled carbon nanotubes were dispersed in methylene bis-acrylamide cross-linked gaur gum gel during gelation. The nano-composite was characterized for morphological, spectral, and analytical data. The solid form of the nano-composite was evaluated as an adsorbent material for the treatment of water containing methylene blue dye molecules as pollutants by the spectrophotometric method. Adsorption isotherm studies suggested that the Freundlich model was the befitting model for adsorption, indicating the multilayered adsorption and the kinetic study revealed the adsorption to occur by a pseudo-second-order kinetic process. The novel nano-composite is found to be a promising material for the adsorptive removal of dye molecules from dye-contaminated wastewater. The adsorption capacity was observed to be 11 mg/g of the material.  相似文献   

17.
To enhance adsorption of organic dyes like malachite green (MG) onto polymeric absorbents, we prepared carbon nanotube (CNT) filled polyaniline (PANI) composites with large surface areas by simply using entangled CNTs as porous frameworks during PANI polymerization. Adsorption behavior of the CNT/PANI composites in MG solutions was experimentally investigated and theoretically analyzed. The CNT/PANI composites exhibit much higher equilibrium adsorption capacity of 13.95 mg g?1 at an initial MG concentration of 16 mg L?1, increasing by 15% than the neat PANI, which is mainly attributed to large surface areas and strong CNT‐PANI interactions of the composites. In addition, theoretical analyses indicate that the adsorption kinetics and the isothermal process of the composites can be well explained by using the Ho pseudosecond‐order model and the Langmuir model, respectively. In light of their high MG adsorption and easy operation, the CNT/PANI composites have great potential as high‐efficiency adsorbents for removal of dyes from wastewater. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Abstract

This work focused on producing different graphene oxide (GO) samples for further application in the adsorptive removal of dyes from real textile wastewater. Among all conditions tested, the sample produced using KMnO4 and no sonication bath exhibited the best performance. Before the experiments using wastewater, kinetics and equilibrium of adsorption studies were performed with Methylene Blue (MB) dye. Experimental data showed the isotherm fitted the Freundlich model, and kinetic results fitted the pseudo-second order model. Theoretical qmax was 308.11?mg.g?1 and over 90% removal of MB was reached in approximately 5?min. Although GO has been widely applied to remove cationic and anionic dyes from water, not many studies have presented GO as an adsorbent for real textile wastewater treatment. In 30?min, GO removed nearly 85% of turbidity and over 60% of color from a real sample, indicating that GO might be an excellent alternative to treat textile wastewater.  相似文献   

19.
Preparation of a biopolymer chitosan‐polypropylene imine (CS‐PPI) as a biocompatible adsorbent and its reactive textile dyes removal potential were performed. Chemical specifications of CS‐PPI were determined using Fourier transform infrared, 1H‐NMR, and 13C‐NMR. The surface morphology of the CS‐PPI surface was characterized by scanning electron microscopy. Results confirmed that the linkages between the NH2 groups of PPI dendrimer and carboxylic groups of modified Chitosan were accomplished chemically. Two textile reactive dyes, reactive black 5 (RB5) and reactive red 198 (RR198), were used as model compounds. A response surface methodology was applied to estimate the simple and combined effects of the operating variables, including pH, dye concentration, time contact, and temperature. Under the optimal values of process parameters, the dye removal performance of 97 and 99% was achieved for RB5 and RR198, respectively. Furthermore, the isotherm and kinetic models of dyes adsorption were performed. Adsorption data represented that both examined dye followed the Langmuir isotherm. The adsorption kinetics of both reactive dyes were satisfied by pseudo‐second order equation. Based on this study, CS‐PPI due to having high adsorption capacity (6250 mg/g for RB5 and 5882.35 mg/g for RR198), biocompatibility and ecofriendly properties might be a suitable adsorbent for removal of reactive dyes from colored solutions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
New carbon composite materials were prepared by pyrolysis of mixture of coffee wastes and red mud at 700 °C with the inorganic: organic ratios of 1.9 (CC-1.9) and 2.2 (CC-2.2). These adsorbents were used to remove reactive orange 16 (RO-16) and reactive red 120 (RR-120) textile dyes from aqueous solution. The CC-1.9 and CC-2.2 materials were characterized using Fourier transform infrared spectroscopy, Nitrogen adsorption/desorption curves, scanning electron Microscopy and X-ray diffraction. The kinetic of adsorption data was fitted by general order kinetic model. A three-parameter isotherm model, Liu isotherm model, gave the best fit of the equilibrium data (298 to 323 K). The maximum amounts of dyes removed at 323 K were 144.8 (CC-1.9) and 139.5 mg g?1 (CC-2.2) for RO-16 dye and 95.76 (CC-1.9) and 93.80 mg g?1 (CC-2.2) for RR-120 dye. Two simulated dyehouse effluents were used to investigate the application of the adsorbents for effluent treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号