首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The strain sensing and thermal–mechanical behaviors of well dispersed multi-walled carbon nanotube/polystyrene (MWCNT/PS) composite films with different wt.% of carbon nanotubes were analyzed. The thermal–mechanical properties are studied using a dynamical mechanical analyzer and the results give their storage modulus (E′) and loss modulus (E″) as a function of temperature. We found an increase in E′ of up to 122% at 80 °C for a 6 wt.% MWCNT/PS composite compared to PS. The glass transition temperature increased significantly with an increase in MWCNTs concentration. The strain sensing behavior of the films is measured by applying an axial load over film which is attached to a brass specimen. The composite films exhibit excellent strain sensing behavior for different MWCNT contents. The result shows that an electromechanical response of the composite films varies linearly with applied strain even at high strains.  相似文献   

2.
Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by the method of solution mixing/casting. The dispersity of the MWCNTs in the PVDF-TrFE matrix was investigated using transmission electron microscopy (TEM), revealing that MWCNT are well distributed in the PVDF matrix. Both individual and agglomerations of MWCNT’s were evident. The electrical properties were characterized by ac conductivity measurements. The conductivity was found to obey a percolation-like power law with a percolation threshold below 0.30 wt. %. The electrical conductivity of the neat PVDF-TrFE could be enhanced by seven orders of magnitude, with the addition of only 0.3 wt. % MWCNTs, suggesting the formation of a well-conducting network by the MWCNT’s throughout the insulating polymer matrix. The intercluster polarization and anomalous diffusion models were used to explain the dielectric behaviors of the composites near the percolation threshold, and the analyses of ac conductivity and dielectric constant imply that the intercluster polarization is more applicable to our systems.  相似文献   

3.
Polystyrene/polystyrene-block-poly(methyl methacrylate)/poly(methyl methacrylate) (PS/PS-b-PMMA/PMMA) composite particles were prepared by releasing toluene from PS/PS-b-PMMA/PMMA/toluene droplets dispersed in a sodium dodecyl sulfate aqueous solution. The morphology of the composite particles was affected by release rate of toluene, the molecular weight of PS-b-PMMA, droplet size, and polymer composition. ‘Onion-like’ multilayered composite particles were prepared from toluene droplets of PS-b-PMMA and of PS/PS-b-PMMA/PMMA, in which the weights of PS and PMMA were the same. The layer thicknesses of the latter multilayered composite particles increased with an increase in the amount of the homopolymers. PS-b-PMMA/PS composite particles had a sea-islands structure, in which PMMA domains were dispersed in a PS matrix. On the other hand, PS-b-PMMA/PMMA composite particles had a cylinder-like structure consisting of a PMMA matrix and PS domains.  相似文献   

4.
Crosslinked polystyrene‐multiwalled carbon nanotube (PS‐MWCNT) balls, which act as conductive microfillers, were prepared by the in situ suspension polymerization of styrene with MWCNTs and divinyl benzene (DVB) as a crosslinking agent. The diameters of the synthesized crosslinked PS‐MWCNT balls ranged from 10 to 100 μm and their electrical conductivity was about 7.7 × 10?3 S/cm. The morphology of the crosslinked PS‐MWCNT balls was observed by scanning electron microscopy and transmission electron microscopy. The change in the chemical structure of the MWCNTs was confirmed by Raman spectroscopy and Fourier transform infrared spectroscopy. The mechanical and electrical properties of the PS/crosslinked PS‐MWCNT ball composites were investigated. It was found that the tensile strength, ultimate strain, Young's modulus, and impact strength of the PS matrix were enhanced by the incorporation of the crosslinked PS‐MWCNT balls. In addition, the mechanical properties of the PS/crosslinked PS‐MWCNT ball composites were better than those of the PS/pristine MWCNT composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
A homogeneous dispersion of multi-walled carbon nanotubes (MWCNTs) in syndiotactic polystyrene (sPS) is obtained by a simple solution dispersion procedure. MWCNTs were dispersed in N-methyl-2-pyrrolidinone (NMP), and sPS/MWCNT composites are prepared by mixing sPS/NMP solution with MWCNT/NMP dispersion. The composite structure is characterized by scanning electron microscopy and transmission electron microscopy. The effect of MWCNTs on sPS crystallization and the composite properties are studied. The presence of MWCNTs increases the sPS crystallization temperature, broadens the crystallite size distribution and favors the formation of the thermodynamically stable β phase, whereas it has little effect on the sPS γ to α phase transition during heating. By adding only 1.0 wt.% pristine MWCNTs, the increase in the onset degradation temperature of the composite can reach 20 °C. The electrical conductivity is increased from 10−10∼−16 (neat sPS) to 0.135 S m−1 (sPS/MWCNT composite with 3.0 wt.% MWCNT content). Our findings provide a simple and effective method for carbon nanotube dispersion in polymer matrix with dramatically increased electrical conductivity and thermal stability.  相似文献   

6.
Multi-walled carbon nanotube (MWCNT)/C/polystyrene (PS) composite materials were prepared by in situ polymerization of monomer in preformed MWCNT/C foams. MWCNT/C foams were preformed using polyurethane foam as template. The preformed MWCNT/C foams had a more continuous conductive structure than the carbon nanotube networks formed by free assembly in composites. The structure of the MWCNT/C foam network was characterized with scanning electron microscopy. The MWCNT/C/PS composites have an electric conductivity higher than 0.01 S/cm for a filler loading of 1 wt.%. Enhancement of thermal conductivity and mechanical properties by the preformed MWCNT/C foam were also observed.  相似文献   

7.
An amino acid containing poly(amide-thioester-imide) (PATEI) possessing a conjugated thiadiazol ring was shown to be effective for dispersing multiwall carbon nanotubes (MWCNTs) in N,N′-dimethylacetamide. Through casting of these dispersions, MWCNT/PATEI composite films were successfully fabricated on substrates and showed no signs of macroscopic aggregation. To increase the compatibility between PATEI matrix and MWCNTs, carboxyl-functionalized MWCNTs (f-MWCNTs) were used in this study. The f-MWCNTs were dispersed homogeneously in the PATEI matrix while the structure of the polymer and the MWCNTs structure were stable in the preparation process as revealed by transmission electron microscopy. Tensile tests and thermal analysis were carried out on free-standing composite films for different MWCNT loading levels. Results showed that overall mechanical and thermal properties of the composites were greatly improved as compared with the neat PATEI film. Fourier transform infrared spectroscopy, powder X-ray diffraction, and field emission electron microscopy were also used to evaluate the MWCNT/PATEI composite system.  相似文献   

8.
A well-dispersed multiwall carbon nanotube (MWCNT)/syndiotactic polystyrene (sPS) composite was prepared by simple in-situ polymerization of styrene using pentamethylcyclopentadienyltitanium(IV) trimethoxide (Cp*Ti(OMe)3) attached to the shortened and functionalized MWCNT (f-MWCNT). The attachment of Cp*Ti(OMe)3 to the f-MWCNT was confirmed by thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy, and energy dispersive X-ray spectroscopy. Cp*Ti(OMe)3 attached to pristine MWCNT in the presence of methylaluminoxane (MAO) did not produce PS, whereas Cp*Ti(OMe)3 attached to f-MWCNT showed a high catalytic activity for the syndiospecific polymerization of styrene under the same polymerization conditions. Obtained sPS showed a narrow molecular weight distribution (PDI ≈ 2), a high SI value (≥90%), and a high melting point (≈272 °C). Scanning electron microscopy and transmission electron microscopy images showed that MWCNT strands were well dispersed in the MWCNT/sPS composite. Such composites had greatly improved thermal stability compared to normal sPS polymers.  相似文献   

9.
Multiwall carbon nanotubes and gold nanoparticles (MWCNT–AuNP) were assembled into strands by cross-linking with alkanedithiols. Long MWCNT strands were first shortened to ∼0.25 μm by chemical oxidation followed by ball-milling, and then thiolated by reaction with cysteamine. The thiol groups on the surfaces of the MWCNT strands combined with Au nanoparticles to produce MWCNT–AuNP strands. A simple mixing of these strands with alkanedithiols resulted in an assembly of strands linked by the alkanedithiols which adsorbed onto the surfaces of the AuNPs attached to the MWCNT–AuNP strands. Short MWCNT–AuNP strands connected to one another in a parallel arrangement, whereas long strands assembled in a crossing arrangement. The possibility of using this method to chemically bond MWCNTs to lower the contact resistance of thin CNT films is discussed.  相似文献   

10.
Boehmite/multi-wall carbon nanotube (MWCNT) composite powders were prepared by hydrothermal processing. Starting chemical of aluminum acetate powders (2Al(OH)(C2H3O2)2) and MWCNTs were mixed for the formation of stoichiometric boehmite powders in an attempt to synthesize MWCNT-reinforced boehmite nano-powders via hydrothermal synthesis at 200 °C for 2 h. Kinetically stable suspensions of MWCNT–boehmite composite powders were prepared and subsequently electrophoretic deposition (EPD) was applied to obtain complex shape products in the form of micro-gears. It is shown that the EPD technique is a powerful tool to manufacture small components in a short time. Detail TEM observations also indicated that hydrothermal processing provides an ideal environment to obtain homogeneous mixtures of MWCNT–boehmite powders due to effective surface functionalization of MWCNTs under hydrothermal conditions.  相似文献   

11.
In the present paper, three ammonium salts namely, tetraethylammonium bromide (TEAB), tetrabutylammonium bromide (TBAB), and cetyltrimethylammonium bromide (CTAB) were employed to prepare organoclay by cation exchange process. Polystyrene (PS) /clay nanocomposites were prepared by melt blending using commercial nanoclay and organoclays prepared using above mentioned salts. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis indicated that the modified clays were intercalated and/or exfoliated into the polystyrene matrix to a higher extent than the commercial nanoclay. Further, amongst the modified organoclays, TBAB modified clay showed maximum intercalation of clay layers and also exfoliation to some extent into the polystyrene matrix. TEM micrograph exhibited that TBAB modified clay had the best nanoscale dispersion with clay platelet thickness of ∼6–7 nm only. The mechanical properties of the nanocomposites such as tensile, flexural and izod impact strength were measured and analyzed in relation to their morphology. We observed a significant improvement in the mechanical properties of polystyrene/clay nanocomposites prepared with modified clays as compared to commercial organoclay, which followed the order as; PS/TBAB system > PS/CTAB system > PS/TEAB system. Thermogravimetric analysis (TGA) demonstrated that T10, T50 and Tmax were more in case of polystyrene nanocomposites prepared using modified organoclays than nanoclay [nanolin DK4] and maximum being in the case of PS/CTAB system. The results of Differential Scanning Calorimetry (DSC) confirmed that the glass transition temperature of all the nanocomposites was higher as compared to neat polystyrene. The nanocomposites having 2% of TBAB modified clay showed better oxygen barrier performance as compared to polystyrene.  相似文献   

12.
Conductive multiwall carbon nanotube/polystyrene (MWCNT/PS) composites are prepared based on latex technology. MWCNTs are first dispersed in aqueous solution of sodium dodecyl sulfate (SDS) driven by sonication and then mixed with different amounts of PS latex. From these mixtures MWCNT/PS composites were prepared by freeze-drying and compression molding. The dispersion of MWCNTs in aqueous SDS solution and in the PS matrix is monitored by UV–vis, transmission electron microscopy, electron tomography and scanning electron microscopy. When applying adequate preparation conditions, MWCNTs are well dispersed and homogeneously incorporated in the PS matrix. The percolation threshold for conduction is about 1.5 wt% of MWCNTs in the composites, and a maximum conductivity of about 1 S m−1 can be achieved. The approach presented can be adapted to other MWCNT/polymer latex systems.  相似文献   

13.
Li Wang  Jiang Zhao  Charles C. Han 《Polymer》2008,49(8):2153-2159
Phase separation of a triblock copolymer, polystyrene-b-(ethylene-co-butylene)-b-styrene (SEBS) on the thin films of a homopolymer, polystyrene (PS), was studied by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The final morphology after phase separation was found to be greatly dependent on the relation between the molecular weight of the PS block and homo-PS. Dispersed spherical and worm-like micelles of SEBS were observed when the molecular weight of homo-PS is smaller than the PS block in SEBS, while large structures with inner micro-phase separation of SEBS was found when the molecular weight of homo-PS was much higher than that of the PS block. The origin of such a change in morphology is attributed to the difference of structure and interfacial tension at the interface between the matrix homo-PS and the PS block in SEBS triblock copolymer assembly.  相似文献   

14.
To shield undesirable electromagnetic waves caused by electronic devices and simultaneously resolve the flame safety of the electronic components, an electromagnetic interference (EMI) shielding material with excellent flame‐retardant properties is urgently needed. The synergistic effect of the intumescent flame retardant (IFR) and multiwalled carbon nanotubes (MWCNTs) for polystyrene (PS) nanocomposites prepared by melt blending was investigated. The results show that addition of certain amounts of IFRs facilitated the dispersion of MWCNTs in the PS matrix, and the percolation threshold of the MWCNTs in the PS matrix also decreased from 1.67 ± 0.05 to 1.29 ± 0.04 wt %. Moreover, the EMI shielding efficiencies (SEs) of the PS–MWCNT–IFR composites were consistently higher than those of the PS–MWCNT composites without the addition of the IFRs at the same MWCNT content; this indicated that the synergistic effect of the MWCNTs and IFRs effectively improved the EMI SE of the PS–MWCNT–IFR composites. Furthermore, the limiting oxygen index (LOI) testing results show that the LOI values of the PS–MWCNT composites were consistently higher than 27%; this indicated that the PS–MWCNT composites effectively met the needs of flame safety; this indicated that the PS–MWCNT–IFR composite is a novel and promising candidate for an ideal EMI shielding material with excellent flame‐retardant properties for today's electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45088.  相似文献   

15.
A method is reported that involves the bulk polymerization of styrene monomer in the presence of multi-wall carbon nanotubes (MWCNTs) and polystyrene (PS) beads, for the preparation of MWCNT/PS conducting composites with a significantly lower (0.08 wt.% MWCNT) percolation threshold than previously reported. Thus, the conductivities of 7.62 × 10−5 and 1.48 × 10−3 S cm−1 were achieved in the MWCNT/PS composites through homogeneous dispersion of 0.08 and 0.26 wt.% CNTs, respectively in the in situ polymerized PS region by using 70 wt.% PS beads during the polymerization. The extent of dispersion and location of the MWCNTs in the PS matrix has been investigated with a scanning and transmission electron microscopy. The conductivity of the composites was increased with increasing wt.% of the PS beads at a constant CNT loading, indicating the formation of a more continuous network structure of the CNTs in PS matrix.  相似文献   

16.
A polymer blend system consisting of polystyrene grafted onto poly (p-phenylene ethynylene) (PS-g-PPE) and poly (styrene-block-isoprene-block-styrene) triblock copolymer (SIS) yields highly polarized emission due to the unidirectional alignment of the PPE molecules. During the roll casting, the triblock copolymer microphase separates and creates unidirectionally aligned PS cylindrical microdomains in the rubbery PI matrix. PPE, a fluorescent conjugated polymer, was grafted with polystyrene (PS) side chains that enabled sequestration and alignment of these rigid backbone emitter molecules into the PS microdomains of the SIS triblock copolymer. Deforming the thermoplastic elastomer in a direction perpendicular to the orientation direction of the cylinders causes rotation of the PS cylinders and the PPE emitter molecules and affords tunable polarized emission due to re-orientation of the PPE containing PS cylinders as well as film thinning from Poisson effect.  相似文献   

17.
Polystyrene‐b‐alkyl, polystyrene‐b‐polybutadiene‐b‐polystyrene, and polystyrene‐b‐poly(propylene glycol)monotridecyl ether were synthesized using macro initiators and atom transfer radical polymerization or by esterifications of homopolymers. The aim was a maximum molecular weight of 4 kg/mol and minimum polystyrene content of 50 w/w %, which by us is predicted as the limits for solubility of polystyrene‐b‐alkyl in polystyrene. DSC showed polystyrene was plasticized, as seen by a reduction in glass transition temperature, by block copolymers consisting of a polystyrene block with molecular weight of approximately 1 kg/mol and an alkyl block with a molecular weight of approximately of 0.3 kg/mol. The efficiency of the block copolymers as plasticizers increases with decreasing molecular weight and polystyrene content. In addition, polystyrene‐b‐alkyl is found to be an efficient plasticizer also for polystyrene‐b‐polyisoprene‐b‐polystyrene (SIS) block copolymers. The end use properties of SIS plasticized with polystyrene‐b‐alkyl, measured as tensile strength, is higher than for SIS plasticized with dioctyl adipate. The polystyrene‐b‐polybutadiene‐b‐polystyrene and polystyrene‐b‐poly(propylene glycol)monotridecyl ether series were only partially soluble in polystyrene and insoluble in the polystyrene phase of SIS. For the lowest molecular weight samples, this leads to measurable plasticization of polystyrene but no plasticization of SIS. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 981–991, 2005  相似文献   

18.
采用自主设计的水辅混炼挤出设备,制备3种氧化石墨烯(GO)含量(0.1 %、0.3 %、0.5 %,质量分数,下同)的聚苯乙烯(PS)/GO纳米复合材料,观察样品的微观结构,测试其流变性能和热性能。结果表明,GO被较好剥离且呈网状较均匀地分散在PS基体中,这主要归因于螺杆混炼流场不断细化PS熔体中的GO悬浮液以及水对熔体的塑化和溶胀效应促进PS分子链插层进入GO片层之间的共同作用;低频区PS/GO样品的储能模量、复数黏度和松弛时间均比纯PS样品的高,这是因为较均匀分散的网状GO片与PS之间形成较强的分子间作用力,降低了PS分子链的活动性;PS/GO样品的热稳定性比纯PS样品的高,这归因于GO片在PS基体中呈网状分布和GO表面存在π键。  相似文献   

19.
We investigated the effect of an anisotropic silicate layer on the alignment and orientational proliferation of hexagonally packed cylinder microdomains of a block copolymer in the presence of a clay by using synchrotron small angle X-ray scattering (SAXS), rheology, and transmission electron microscopy (TEM). The block copolymer employed in this study was polystyrene-block-polyisoprene-block-polystyrene copolymer (SIS). The degree of intercalation of the clay in the presence of SIS was examined by wide angle X-ray diffraction (WAXD).Almost all of the HEX cylinders in neat SIS are aligned toward the flow direction after large amplitude oscillatory shearing is applied to the specimens. However, some tactoids in nanocomposites are not aligned, although most tactoids are also aligned to the flow direction. Due to HEX cylinders near tactoids, which are not aligned to the flow direction, the orientational factor of HEX cylinders in SIS/clay nanocomposites is smaller than that of neat SIS. However, once HEX cylinders in SIS/clay nanocomposites are degenerated after experiencing body-centered cubic microdomains, the decrease in the orientational factor from original aligned HEX is smaller compared with neat SIS.  相似文献   

20.
The effects of polystyrene-co-maleic anhydride (SMA) compatibilizer on mechanical, thermal and morphological properties of polystyrene (PS)/zinc oxide (ZnO) composites were investigated for the first time in this study. PS/ZnO composites were prepared using a twin screw extruder and were then molded by compression method. In order to improve adhesion between filler and matrix, SMA compatibilizer is used in the composites. Tensile strength and Young??s modulus were increased with increasing ZnO and SMA at low concentration, but they were decreased with increasing high concentrations of ZnO and SMA content. Thus, mechanical properties can be enhanced in the composites with SMA compatibilizer. Moreover due to the effect of particle size, 250?nm ZnO particles (ZnO250) improved the mechanical properties of PS more than 71?nm ZnO particles (ZnO71) due to the increased aggregation of latter particles. Glass transition temperatures were not significantly changed when both ZnO and SMA were incorporated. Degradation temperatures of the composites increased with the addition of ZnO particles compared with neat PS and slightly decreased with the incorporation of SMA compared with the nascent composite. Scanning electron microscopy (SEM) analysis showed the better dispersion and compatibility of ZnO particles in PS/ZnO composites with the addition of SMA especially at the content of 3?wt%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号