首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
The paper deals with sorption isotherms and drying kinetics of Eucalyptus globulus. The sorption isotherms have been determined using a static gravimetric method and then fitted by GAB equation at T = 30, 40, and 50°C over a range of relative humidity from 0.05 to 0.9. The drying kinetics in a solar dryer with an auxiliary heating system are determined. The results show with good reproducibility that temperature is the main factor in controlling the drying rate. The drying rate equation is determined empirically from the characteristic curve of drying.  相似文献   

2.
ABSTRACT

After proposing simple empirical models for drying kinetics and for sorption isotherms, the authors show that browning during drying of Granny-Smith apple samples can be calculated from models developped in static conditions. The time at which the browning begins (tB) is similar to the induction time deduced from the static conditions ; it corresponds to a very low sample water content (around 1% dry basis) and to a sample temperature equal to the heating temperature. The “thermic past” (drying method, drying rate, heating temperature before tB) has no influence on the browning rate, only the heating temperature after tB is important  相似文献   

3.
Abstract

Desorption isotherms for 1 mm thick garlic slices were determined at between 25 and 50°C and satisfactorily fitted with the G.A.B. equation. The kinetics of drying of slices of thickness 1.5 - 5.0 mm were determined at between 40 and 60°C using an air flow rate of 2.5 m-s?, and the conditions affording a high-quality product m the shortest time were identified. After establishing how the effective diffusion coefficient of the garlic slices varied with their moisture content during drying, a diffusional model accounting for these variations was developed and satisfactorily fitted to the experimental kinetic data.  相似文献   

4.
Drying is an important unit operation in processing of foods with a long shelf life. The drying process influences product properties and quality; the products may shrink, break, or undergo rheological, physical, and biochemical changes. Important parameters responsible for product quality changes during drying are temperature, relative humidity, and residence time. Studies of thermal and mass transfer properties during drying are essential for understanding the changes in product quality and for designing and dimensionalizing the drying process.

Drying kinetics, sorption properties, shrinkage, and freezing point depression were determined during atmospheric freeze drying (AFD) of pieces of apple, turnip cabbage, and cod. Adsorption rate and sorption isotherms were determined in the end product. The drying temperature affected the physical properties. Drying at ?5°C resulted in a larger shrinkage than drying at ?11°C. GAB modeling was used to characterize the sorption properties of the products. No typical sigmoidal shape was found of the moisture sorption isotherms of the products, which is in accordance with the Guggenheim constant found from the same results. Experimental data on freezing point depression were used to find product constants E and b in the Schwartzberg equation for the freezing point depression. Freezing point depression, as a function of the dry matter content, was determined using Schwartzberg's equation and a component composition model (CCM). The result indicates an influence of structural effects on freezing point depression.  相似文献   

5.
Abstract

Equilibrium moisture content isotherms for Spanish hazelnut (Corylus avellana L.) at different temperatures (30°C-80°C) were determined using static gravimetric method. Thin layer drying experiments were done with forced air circulation and were conducted with different operating conditions to determine the drying characteristics of hazelnuts. The effect of air temperature (30°C-70°C), air velocity (0.5 m/s - 2 m/s) and drying bed loading density (50 kg/m2 - 150 kg/m2) on drying of unshelled and shelled hazelnuts was studied. Six mathematical models were used to fit the experimental equilibrium moisture content data, from which the G.A.B. model was found to give the best fit. Diffusion coefficients were determined by fitting experimental thin-layer drying curves to the Fick's diffusion model. Variation of the effective diffusion coefficient with temperature was of the Arrhenius type. The Page equation was found to describe adequately the thin layer drying of hazelnut. Page equation drying parameters k and n were correlated with air temperature and relative humidity.  相似文献   

6.
ABSTRACT

Drying related properties of apple are evaluated for various different drying methods (namely, convective, vacuum, microwave, osmotic and freeze drying), and their corresponding process conditions. The examined properties are drying kinetics, equilibrium material moisture content, density, porosity, color and viscoelastic characteristics. The effect of various process factors on these properties is described through particular mathematical models. The model parameters are estimated by fitting the corresponding model equations on a wide range of experimental data. Drying kinetics is greatly affected by the characteristic particle size and drying air temperature for convective drying, while for the case of microwave drying they are affected by the vacuum pressure and the emitted radiation power. Equilibrium material moisture content is affected by the temperature and the humidity of the surrounding air, while the osmotic pretreatment shifts the sorption isotherms to higher water activity levels. The quality properties examined, are significantly affected by the drying method. More specifically, osmotic dehydration decreases the porosity of the final product, while it prevents color deterioration and enchances the viscous nature of dehydrated apple. Freeze-dried apples develop the highest porosity, have the most elastic structure and the lowest rate of color deterioration.  相似文献   

7.
ABSTRACT

The external mechanisms that control drying rate are basically fixed by the operating conditions of the dryer being the temperature of the drying air the most important one. The final content of thermosensitive compounds is also determined by this condition and this is why the final quality of the product and the operating conditions are inter-related. The example of this phenomenon is the processing of pyrethrum. The organic compounds extracted from the Chrysanthemus cinerariaefolium flowers are called pyrethrins, which is the most ancient known natural insecticide. In this work, results obtained from the experimental drying of Chrysanthemus cinerariaefolium flowers are presented. Also, the influence of the drying air temperature on the pyrethrin content is established. The experimental data were used to derive a mathematical model that describes the drying rate and degradation kinetics.  相似文献   

8.
ABSTRACT

Drying kinetics of four fruits (prune, quince, fig and strawberry) were studied by using a simple mass transfer mathematical model involving a characteristic parameter (K) as a function of process variables. The model was tested with data produced in a laboratory air dryer, using non-linear regression analysis. The investigation involved three values of sample thickness (5, 10, 15mm) and three different air temperatures (50, 60, 70?°C).

The parameters of the model were found to be greatly affected by sample thickness and air temperature. The effect of moisture content on the porosity of three fruits (namely avocado, prune and strawberry) was also investigated. A simple mathematical model was used to correlate porosity with moisture content. It was found that porosity increased with decreasing moisture content.

Samples of three fruits (avocado, prune and strawberry) were investigated to estimate color changes during conventional drying at 70?°C. A first order kinetic model was fitted to experimental data with great success. It is found that the color of avocado and strawberry change while the color of prune remains the same.

Furthermore, the water sorption isotherms of three fruits (avocado, prune and strawberry) at 25° temperature were determined experimentally and the parameters at the GAB equation were evaluated by means of non-linear regression analysis. The use of the above equation produced a very good fit.  相似文献   

9.
Concrete structures are often subjected to drying in the natural environment. To simulate moisture transport in concrete during drying, a continuum model is commonly used, which generally requires the measured water vapor desorption isotherm as input data to address the equilibrium between liquid phase and water vapor at a given temperature. The main problem in measuring desorption isotherms is that the sample needs very long time to reach mass equilibrium at a certain relative humidity. To improve the method of measurement of sorption isotherms, we proposed to use Weibull equation to determine the mass loss at the infinite time. However, Weibull equation does not work well with the anomalous drying kinetics that were recently reported in the literature. In this paper, based on the theory of dual-porosity, a new equation is proposed by separating the moisture transport in the large and small pores to estimate the drying kinetics for cementitious materials. Fitting the drying kinetics measured by the dynamic vapor sorption analyzer shows that the newly developed equation has a very high capability for a large range of relative humidities, especially for the anomalous drying kinetics. This paper also demonstrates that using the proposed equation can reduce the duration of measuring desorption isotherms.  相似文献   

10.
《Drying Technology》2013,31(7):1755-1756
Abstract

The water sorption isotherms of the Erythrina fusca Lour bark at 30 and 40°C were determined over relative humidity ranging from 55 to 85%. The equilibrium moisture content was determined gravimetrically. The moisture sorption isotherms showed that the equilibrium moisture decreases with increase of temperature. Six models were used for to fit the experimental curves of equilibrium humidity. Parameters of each equation were determined by nonlinear regression analysis. The isosteric heat of moisture sorption was calculated using the Claussius-Clapeyron equation.  相似文献   

11.
ABSTRACT

Drying of lightly salted sardine (Sardinella aurita) was accomplished using three air temperatures (35°C, 40°C, 50°C) and three air velocities (0.5 m/s, 1.5 m/s, 2 m/s); the effects of drying conditions on drying kinetics were studied. As for all biological products, air temperature is the main factor influencing the drying kinetics. However, over a given temperature which seems to correspond to protein modification (50°C), and at a high air flow rate (2 m/s and 2.5 m/s) a crust formation on the surface of the fish, due to the combined effect of heat and salt was observed. This phenomenon inhibited the drying rate. From the drying curves, two falling rate periods were observed. The dimensionless drying rate versus a dimensionless moisture content data were regressed by the Marquardt Levenberg non-linear optimization method to obtain an empirical equation describing the salted sardine characteristic drying curve.  相似文献   

12.
Combining ammonia fiber expansion (AFEX?) pretreatment with a depot processing facility is a promising option for delivering high-value densified biomass to the emerging bioenergy industry. However, because the pretreatment process results in a high moisture material unsuitable for pelleting or storage (40% wet basis), the biomass must be immediately dried. If AFEX pretreatment results in a material that is difficult to dry, the economics of this already costly operation would be at risk. This work tests the nature of moisture sorption isotherms and thin-layer drying behavior of corn (Zea mays L.) stover at 20°C to 60°C before and after sequential AFEX pretreatment and pelletization to determine whether any negative impacts to material drying or storage may result from the AFEX process. The equilibrium moisture content to equilibrium relative humidity relationship for each of the materials was determined using dynamic vapor sorption isotherms and modeled with modified Chung-Pfost, modified Halsey, and modified Henderson temperature-dependent models as well as the Double Log Polynomial (DLP), Peleg, and Guggenheim Anderson de Boer (GAB) temperature-independent models. Drying kinetics were quantified under thin-layer laboratory testing and modeled using the Modified Page's equation. Water activity isotherms for non-pelleted biomass were best modeled with the Peleg temperature-independent equation while isotherms for the pelleted biomass were best modeled with the Double Log Polynomial equation. Thin-layer drying results were accurately modeled with the Modified Page's equation. The results of this work indicate that AFEX pretreatment results in drying properties more favorable than or equal to that of raw corn stover, and pellets of superior physical stability in storage.  相似文献   

13.
ABSTRACT

This paper explores the influence of temperature and pressure on drying kinetics of 2-(3-benzoylphenil propionic acid) ketoprofen, in a vacuum dryer on laboratory scale, Experimentally determined relations between moisture content and drying rate vs time, were approximated with an exponential model. Model parameters were correlated with drying conditions (temperature, pressure) and defined by functions of their potentions.

From an energy balance of the process, a mathematical model for simulating dependence of sample temperature vs drying time, and moisture content of material, has been developed.

Simulation of the drying kinetics and sample temperature, by use of those functional dependencies shows good agreement with experimental results.  相似文献   

14.
The sorption of platinum on glutaraldehyde cross‐linked chitosan was investigated at pH 2, using several chitosan samples prepared from different origins and characterized by different mol fractions of N‐acetylation (FA). The influence of material conditioning was also tested: chitosan was dissolved and then re‐precipitated and/or dried (using either oven‐drying or freeze‐drying). The influence of the different characteristics and treatments on both sorption isotherms and uptake kinetics was checked. Part I has studied the effect of preparation and source on sample crystallinity. Shrimp chitosan has a greater sorption affinity for platinum than fungal chitosan and squid chitosan respectively. Sorption kinetics were found comparable for fungal chitosan and shrimp chitosan, while diffusion was more restricted in squid chitosan due to the higher crystallinity. Decreasing the FA increased sorption capacity for shrimp chitosan but decreased sorption levels for squid material. While FA did not influence sorption kinetics for shrimp material it strongly decreased kinetics for squid chitosan. The type of drying procedure hardly affected sorption kinetics and isotherms but when a re‐precipitation step was included in the preparation procedure, the material had to be freeze‐dried to maintain high sorption properties. The freeze‐drying did not control sorption performance, except in the case of re‐precipitated material. © 2003 Society of Chemical Industry  相似文献   

15.
ABSTRACT

Rough rice at about 21% (wet basis) was dried at various conditions of temperatures and evaporating capacities of air. The influence of both parameters on drying rate has been studied. At high temperatures, high drying rates can be achieved with low evaporating capacities. In addition, desorption isotherms of rough rice were measured at 35, 60 and 85°C and the experimental isotherms data were fitted using a modified Pfost equation.

A compartmental model was developed to simulate the grain moisture content. Heat and mass transfer coefficients were optimized using a Nelder & Mead method. Internal mass transfer coefficient was written as an exponential function of the average moisture content and temperature of the grain and the external mass transfer coefficient as a function of air temperature. The compartmental approach predicts very well the average moisture content with a mean error of about 5% in static and dynamic conditions.  相似文献   

16.
17.
Desorption and adsorption isotherms and drying characteristics of red kidney beans were studied using static and dynamic methods, respectively. The desorption and adsorption isotherms were determined at 60, 50, 40, 30, 20, and 10°C with 32–91% relative humidity (RH). The constant RHs were generated using six saturated salt solutions at constant temperatures. The drying characteristics were determined using a thin-layer dryer with drying air at 50, 40, and 30°C with 35 and 50% RH. The dimensions of the kidney beans before and after drying were measured and shrinkage and sphericity of the beans were calculated. A new method to evaluate the best-fitted equation to characterize the thin-layer drying data was developed. The best-fitted equations to describe the desorption and adsorption isotherms were the modified Chung–Pfost and modified Guggenheim–Anderson–deBoer. The red kidney beans only experienced a falling rate drying period and had a largest shrinkage in the length direction during drying. The Henderson and Pabis model and the modified Page model were the best-fitted models to describe the thin-layer drying data. Using only the values of R2 and mean squared error to evaluate the semitheoretical and empirical models might not be enough. The method developed in this study could help develop a semitheoretical or empirical model with a higher accuracy of drying constant, which could be used to estimate the effective water diffusivity.  相似文献   

18.
Methods are proposed for calculating the equilibrium moisture content and finding the sorption isotherms of resorbable sutures made from polyglycolic acid and polydioxanone based on their chemical structure, which allow modeling and optimizing the conditions for drying them. The calculations were performed with a thermal sorption equation and the Van Krevelen method. The calculated sorption isotherms were confirmed experimentally. The constants of the thermal sorption equation obtained and the proposed method of estimating the thermal sorption coefficient allowed theoretically calculating the sorption values in a wide temperature range and the heat consumption for the drying process. __________ Translated from Khimicheskie Volokna, No. 5, pp. 44–45, September–October, 2007.  相似文献   

19.
《Drying Technology》2007,25(5):853-865
Drying is an important unit operation in processing of foods with a long shelf life. The drying process influences product properties and quality; the products may shrink, break, or undergo rheological, physical, and biochemical changes. Important parameters responsible for product quality changes during drying are temperature, relative humidity, and residence time. Studies of thermal and mass transfer properties during drying are essential for understanding the changes in product quality and for designing and dimensionalizing the drying process.

Drying kinetics, sorption properties, shrinkage, and freezing point depression were determined during atmospheric freeze drying (AFD) of pieces of apple, turnip cabbage, and cod. Adsorption rate and sorption isotherms were determined in the end product. The drying temperature affected the physical properties. Drying at -5°C resulted in a larger shrinkage than drying at -11°C. GAB modeling was used to characterize the sorption properties of the products. No typical sigmoidal shape was found of the moisture sorption isotherms of the products, which is in accordance with the Guggenheim constant found from the same results. Experimental data on freezing point depression were used to find product constants E and b in the Schwartzberg equation for the freezing point depression. Freezing point depression, as a function of the dry matter content, was determined using Schwartzberg's equation and a component composition model (CCM). The result indicates an influence of structural effects on freezing point depression.  相似文献   

20.
Abstract

The effects of chemical pretreatment and air drying temperature on drying kinetics, shrinkage, density and rehydration ratio of grapes were determined at various moisture contents. It was observed that the chemical pretreatment employed - a solution of 2% CaCCb with 0 to 3% ethyl oleate - increased considerably the drying rate. It was established that the shrinkage increased with drying temperature between 40 to 80°C and decreased with increasing concentration of ethyl oleate in the chemical pretreatment solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号