首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
天然气水合物作为一种新型能源,其得到了人们的广泛关注。在对天然气水合物进行开采勘探与开采期间,要求都十分严格。从实际情况来看,在开采天然气水合物过程中,钻井液在确保钻探安全方面有着重要意义。因此,相关工作人员在实际作业期间,应当不断加强对水合物钻井液的研究,从而保证开采作业的顺利进行。  相似文献   

2.
概述了天然气水合物的分子结构,分析了天然气水合物的生成条件,总结了天然气水合物生成的概念模型,研究了天然气水合物的防治方法:物理方法和化学方法。其中物理方法包括:加热法,脱水法,降压法,清管法;化学方法包括:添加热力学抑制,动力学抑制剂以及水合物浆输送技术。提出了今后的研究重点和方向。  相似文献   

3.
张高庆 《广州化工》2020,48(4):17-20
天然气水合物作为潜力巨大的清洁资源,同时对天然气运输管道会产生堵塞,影响运输。开展天然气水合物相平衡的研究,对天然气水合物的开发及天然气的运输有重要的意义。总结了电解质及醇类对水分子间氢键形成和天然气水合物相平衡的影响相关研究成果,在天然气水合物生成机理的基础上,运用氢键理论分析电解质及醇类对天然气水合物相平衡的影响。此外,推测电场与磁场及微波对水合物的形成也有产生一定的影响。  相似文献   

4.
集气工艺中进站温度必须比天然气水合物的生产温度高3℃,否则会生产天然气水合物,导致事故发生,所以天然气水合物的生成温度对于集气工艺的影响非常关键。利用Hysys软件研究天然气井口不同生产参数发生变化时,天然气水合物生成温度的变化规律,从而得到集气工艺的变化规律。通过研究发现,天然气产量、水产量和节流后温度发生变化时,集气工艺需要进行相关的调整,否则会生产天然气水合物,导致管道发生事故;井口产油量和井口压力发生变化时,对于集气工艺基本没有影响,不需要进行调整。  相似文献   

5.
天然气水合物开采过程中水合物饱和度的变化会引起储层渗透率的相应变化,对开采过程造成影响。为研究天然气水合物对多孔介质渗流特性的影响,本文基于孔隙网络模型模拟研究了水合物生成于壁面与中心两种方式下,多孔介质渗流特性变化,并与相关模型进行比较。结果表明,水合物生成于中心时绝对渗透率小于生成于壁面时;水合物饱和度相同时多孔介质孔径越大,渗透率越大;水合物生成于中心时两相相对渗透率等渗点小于生成于壁面时;当水合物饱和度变化时两相相对渗透率几乎不变。说明了储层渗透率与水合物饱和度之间有相对应的关系。  相似文献   

6.
《化工学报》2002,53(1):65-65
不久前 ,我国第一个拥有自主知识产权的天然气水合物模拟实验室在青岛建成 .天然气水合物作为重要的未来能源而越来越受到人们的重视。它是继煤炭和石油之后贮量巨大的战略性环保能源 .我国已在南海西沙海槽和东海冲绳海槽发现了水合物赋存的地球物理标志———BSR .由于对水合物的调查研究尚处于初级阶段 ,对其物理化学性质缺乏了解 ,因此 ,建立天然气水合物模拟实验研究是非常及时和必要的 .该实验室模拟实验研究拟解决的问题包括 :含天然气的水溶液中能否形成水合物的晶核 ,水合物是在什么条件下生成及如何生成 ,沉积物对水合物生成的…  相似文献   

7.
未来对于天然气的运输、调峰以及储存等领域,天然气水合物都会起到重要的作用,天然气水合物应用技术的关键在于天然气水合物的快速及大量生成。因此,对天然气水合物生成过程做进一步研究很有必要。目前,人们主要研究了温差、压力扰动、降温速度等因素对水合物生成过程的影响作用,但基于剪切作用对水合物生成的研究还不够深入。因此,实验研究了在含动力学抑制(PVPK90)的条件下,有无剪切作用对CH4水合物生成量的影响。结果表明:剪切作用会增加天然气与水分子的碰撞几率,促进水合物晶核的生成和成长,但同时会阻碍水合物晶核微粒的聚结作用。一定体积的溶液下,形成的水合物晶核微粒数量受到限制。在剪切作用被消除后,内壁上会聚结并附着大量水合物晶核,并为新的水合物晶核形成提供空间。因此,使甲烷水合物晶核的形成过程与聚结过程在两个连通的容器中同时进行,则水合物的形成过程不会被阻止。更换水合物晶核聚结的容器,则工业上能够大量生成用于储存运输天然气的水合物。  相似文献   

8.
天然气水合物是一种理想的替代能源.目前,对天然气水合物生成的研究,大多以玻璃砂、石英砂等为多孔介质,而很少应用实际的水合物储层沉积物进行实验,本文应用未保压的我国南海天然气水合物沉积物进行水合物生成实验,研究不同孔隙度、注入气体量及初始水饱和度对天然气水合物生成的影响,实验结果显示:注入气体量对生成天然气水合物饱和度影...  相似文献   

9.
青藏高原冻土区储存着大量的天然气水合物资源,CO2置换开采冻土区的天然气水合物可实现天然气水合物的安全开采和温室气体CO2的地层封存。冰点以下多孔介质中气体水合物的生成动力学,是冻土区天然气水合物置换开采研究领域的难点和热点问题。本文全面综述了冰点以下多孔介质中气体水合物的生成动力学研究进展,讨论了不同体系冰点以下多孔介质中气体水合物的形成机理及其生成特性;详述了冰生成水合物机理及其冰粉/多孔介质体系中气体水合物的生成特性,分析了冰点以下多孔介质中气体水合物生成动力学研究尚待完善和改进的地方。最后本文指出冰点以下多孔介质中水合物的生成过程是由传热、传质等多种因素所控制,揭示不同过程的主导因素及其影响规律是今后研究的重点方向。目前对冰点以下多孔介质中水合物的生成特性及机理的认识尚未成熟,仍需深入研究。  相似文献   

10.
《化工学报》2003,54(9):1263-1263
中国科学院广州能源研究所天然气水合物中心承担的中科院知识创新工程方向性项目———天然气水合物 (可燃冰 )开采中若干关键问题的研究 ,在天然气水合物在多孔介质中的形成 /分解条件、外场控制天然气水合物分解速度、化学药剂对天然气水合物分解的影响、天然气水合物热物理性质等相关基础研究方面取得了重要进展。据介绍 ,天然气水合物俗称“可燃冰” ,是近 2 0年来在海洋和冻土带发现的新型洁净优质能源 ,资源量巨大。近几年初步调查证实我国海域存在“可燃冰” ,这为我国研究和开发清洁天然气水合物能源展示出美好前景。目前 ,国际上对…  相似文献   

11.
Progress of Gas Hydrate Studies in China   总被引:3,自引:0,他引:3  
A brief overview is given on the gas hydrate-related research activities carried out by Chinese researchers in the past 15 years. The content involves: (1) Historical review. Introducing the gas hydrate research history in China; (2) Gas hydrate research groups in China. There are nearly 20 groups engaged in gas hydrate research now; (3) Present studies. Including fundamental studies, status of the exploration of natural gas hydrate resources in the South China Sea region, and development of hydrate-based new techniques; (4) Future development.  相似文献   

12.
During the development and application of natural gas, hydrate plugging the pipelines is a very important issue to solve. Currently, adding thermodynamic hydrate inhibitors (THIs) and kinetic hydrate inhibitors (KHIs) in gas-dominated pipelines is a main way to prevent hydrate plugging of flow lines. This paper mainly reviews the efforts to develop THIs and KHIs in the past 20 years, compare the role of various THIs, such as methanol, ethylene glycol and electrolyte, and give the tips in using. The direction of KHIs is toward high efficiency, low toxicity, low pollution and low cost. More than a hundred inhibitors, including polymers, natural products and ionic liquids, have been synthesized in the past decade. Some of them have better performance than the current commercial KHIs. However, there are still few problems, such as the complex synthesis process, high cost and low solubility, impeding the commercialization of these inhibitors. The review also summarized some application of KHIs in China. Research of KHIs in China began late. There are no KHIs used in gas pipelines. Only a few field tests have been carried out. In the end of this paper, the field test of self-developed KHIs by China is summarized, and the guidance is given according to the application results.  相似文献   

13.
The growing use of natural gas, cleanest of all available fossils fuels, is already raising concern regarding the long-term supply of this precious resource. The amount of methane in gas hydrates is much greater than all other presently known sources of methane. This paper describes some fundamental challenges, the location, magnitude, and feasibility of recovery, which must be addressed to recover methane from dispersed hydrate sources. For methane recovery, we briefly describe kinetic models of methane hydrate decomposition for temperature and pressure conditions that mimic in situ methane hydrate stability. We also propose the catalytic role of sediment impurities, if any, in inducing nucleation sites for hydrate formation. The availability of plentiful methane is important to avoid future energy crises, such as that which crippled the world economy three decades ago.  相似文献   

14.
A novel technique for producing a clathrate hydrate from a gaseous guest substance was devised and experimentally tested. This technique employs a horizontally oriented spray nozzle and a vertically oriented porous metal plate placed in opposition to each other in a guest‐gas phase. Water is sprayed onto the plate while a precooled hydrophobic liquid coolant is seeping out of the plate to form a continuous film flowing down the plate surface. The coolant film is expected to sweep the heat released by hydrate formation away from the plate surface and, at the same time, to prevent the hydrate crystals from agglomerating on the surface thereby hindering the successive contact of the water spray with the coolant. A series of experiments has been performed to reveal the behavior of hydrate formation in the above scheme of guest‐gas/water/coolant contact operations. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

15.
A new 750 cm3 pilot test rig based on the “isochoric pressure method” was designed and commissioned for the hydrate measurements to concentrate sucrose solutions. The reactor included an improved agitation system and enabled sampling of the sucrose solutions. The experimental method was validated be performing dissociation measurements for the CO2 + water system. Gas hydrate kinetic and sampling data were measured for the CO2 + sucrose solutions at sucrose concentrations between (12–60) oBrix, within the temperature range of (274.65–276.15) K and at pressures up to 3.70 MPa. Results showed that sucrose is a kinetic inhibitor. The data were modeled to obtain hydrate formation rate, storage capacity, gas consumption and apparent rate constant. Stage-wise concentration measurements were performed with reactor conditions at 274.65 K, 3.70 MPa and 130 rpm mixer speed with liquid sample withdrawal. A final sucrose product of approximately 60 oBrix was obtained.  相似文献   

16.
付玮琪  赵子贤  于璟  魏伟  王志远  黄炳香 《化工进展》2022,41(11):5746-5754
针对可燃冰钻采井筒内易发生水合物生成和堵塞的工程问题,本文开展了泡状流条件下甲烷水合物生成实验,发现流速增加会提高水合物生成速率,黄原胶质量分数的增加会降低水合物生成速率。基于传质理论,构建了适用于可燃冰钻采井筒内泡状流条件下水合物生成预测模型,模型考虑了连续相流体流变性、气泡破裂、聚并和形变等因素对泡状流中气液界面分布和气液间传质规律的影响,并耦合实验数据,提出了气泡群间的综合传质系数经验公式,用于描述气泡间相互作用对气液间传质速率的影响。对比实验结果,所建立模型对水合物生成量和水合物生成速率的预测误差分别在±5%和±15%以内,满足工程计算需求。该模型的构建有助于精准预测油气和可燃冰钻采井筒内水合物风险,为建立经济、高效的井筒水合物防治方案奠定理论基础。  相似文献   

17.
A methodology for predicting the incipient equilibrium conditions for carbon dioxide gas hydrates in the presence of electrolytes such as NaCl, KCl and CaCl2 is presented. The method utilizes the statistical thermodynamics model of van der Waals and Platteeuw (1959) to describe the solid hydrate phase. Three different models were examined for the representation of the liquid phase: Chen and Evans (1986), Zuo and Guo (1991), and Aasberg-Petersen et al. (1991). It was found that the model of Zuo and Guo (1991) gave the best results for predicting incipient CO2 gas hydrate conditions in aqueous single salt solutions. The model was then extended for prediction of CO2 gas hydrates in mixed salts solutions. The predictions agree very well with experimental data.  相似文献   

18.
Molecular dynamics was employed to study the inhibition mechanism of vinyl lactam-based kinetic hydrate inhibitors (KHIs). By comparing the inhibition functions of the same KHIs at different initial locations, we found that the KHI molecules on the surface of hydrate nuclei could obviously prolong the hydrate induction time and exhibited the best inhibition effect. The impacts of KHIs on the methane migration and the arrangement of H2O molecules were analyzed at the molecular level. A gas-adsorbing mechanism for KHIs (i.e., the KHIs with an excellent gas adsorption ability could reduce the supersaturation of methane in the aqueous solution, reinforce the migration resistance of methane to the nucleus, and further inhibit the hydrate growth) was proposed. In addition, the conformations of KHI polymer molecules in the aqueous solution are closely related to their inhibitory effect, that is, stretched skeletons and well-organized structures would maximize their inhibitory effect.  相似文献   

19.
甲烷水合物分解实验   总被引:3,自引:2,他引:1       下载免费PDF全文
庞维新  陈光进 《化工学报》2008,59(3):681-686
在体积10 L的静态反应器中研究了水合物分解动力学,考察了储存温度和水合物量等因素对水合物分解的影响。实验结果表明,水合物在273.15 K以下时存在一种异常的自我保护效应,其在268.05 K时分解速度最慢;而水合物的储运压力与储罐中的水合物量有关,当储罐容积一定时,分解压力随着储罐中水合物量的增加而增加,但水合物的分解百分比随着水合物量的增加而减少;最后提出了在一定压力下储运水合物的方法。以期为水合物法固态储存气体技术的工业化应用提供实验数据和理论依据。  相似文献   

20.
天然气水合物资源开采方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李栋梁  樊栓狮 《化工学报》2003,54(Z1):108-112
自然界中存在大量的水合物,这些水合物已经被认为是将来重要的能源,本文分析了天然气水合物资源的特点,并综合介绍了现阶段提出的天然气水合物开采方法及模型,对比分析了典型开采方法,如热激发、降压和注抑制剂等的优缺点和经济性,评述了研究中存在的问题,并提出了今后研究的重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号