首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Poly(vinyl alcohol) (PVA)/clay nanocomposites were synthesized using the solution intercalation method. Na ion‐exchanged clays [Na+–saponite (SPT) and Na+–montmorillonite (MMT)] and alkyl ammonium ion‐exchanged clays (C12–MMT and C12OOH–MMT) were used for the PVA nanocomposites. From the morphological studies, the Na ion‐exchanged clay is more easily dispersed in a PVA matrix than is the alkyl ammonium ion‐exchanged clay. Attempts were also made to improve both the thermal stabilities and the tensile properties of PVA/clay nanocomposite films, and it was found that the addition of only a small amount of clay was sufficient for that purpose. Both the ultimate tensile strength and the initial modulus for the nanocomposites increased gradually with clay loading up to 8 wt %. In C12OOH–MMT, the maximum enhancement of the ultimate tensile strength and the initial modulus for the nanocomposites was observed for blends containing 6 wt % organoclay. Na ion‐exchanged clays have higher tensile strengths than those of organic alkyl‐exchanged clays in PVA nanocomposites films. On the other hand, organic alkyl‐exchanged clays have initial moduli that are better than those of Na ion‐exchanged clays. Overall, the content of clay particles in the polymer matrix affect both the thermal stability and the tensile properties of the polymer/clay nanocomposites. However, a change in thermal stability with clay was not significant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3208–3214, 2003  相似文献   

2.
Nanocomposites of poly(vinyl alcohol) (PVA), nanofibrillated cellulose (NFC), and montmorillonite (MMT) clay were prepared via solvent casting. In addition to investigating the effect of clay loading, PVA matrices crosslinked with poly(acrylic acid) (PAA) were prepared and compared with linear (noncrosslinked) PVA nanocomposites. 13C NMR and infrared spectroscopy confirmed the presence of crosslinks. Scanning electron microscopy revealed effective NFC and MMT clay dispersion throughout the nanocomposites, while X‐ray diffraction highlighted the effectiveness of PAA to encourage clay dispersion. MMT clay provided a barrier against the diffusion of water and oxygen (molecules) through the nanocomposite films. Permeability and adsorption were further reduced by crosslinking, while oxygen barrier properties were remarkably enhanced at elevated relative humidities. Thermal stability of the PVA segments was strengthened by the presence of MMT clay and crosslinks. MMT clay–reinforced PVA and NFC within the films, increasing the Young's modulus, tensile strength, and glass transition temperature. Crosslinking further enhanced the thermomechanical properties by imparting physical restraints on polymer chain segments, providing elasticity, and ductility. The hybrid films were successfully reinforced at elevated humidities, with nanocomposites displaying enhanced storage moduli and near‐complete recovery. POLYM. COMPOS., 35:1117–1131, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
Thermoplastic polyurethane (TPU)/clay nanocomposite films were produced by incorporation of organo‐modified montmorillonite clay (Cloisite 30B) in TPU matrix by two different melt‐mixing routes (direct and master‐batch‐based mixing), followed by compression molding. In master‐batch mixing where the master‐batch was prepared by mixing of clay and TPU in a solvent, better dispersion of clay‐layers was observed in comparison to the nanocomposites produced by direct mixing. As a consequence, superior mechanical and gas barrier properties were obtained by master‐batch mixing route. The master‐batch processing resulted in 284 and 236% increase in tearing strength and tearing energy, respectively, with 5 wt % clay‐loading. Interestingly, in case of master‐batch mixing, the tensile strength, stiffness as well as breaking extension increased simultaneously up to 3 wt % clay‐loading. The helium gas permeability reduced by about 39 and 31% for the TPU/clay nanocomposites produced by mater‐batch and direct mixing routes, respectively, at 3 wt % loading of clay. Finally, the gas permeability results have been compared using three different gas permeability models and a good correlation was observed at lower volume fraction of clay. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46422.  相似文献   

4.
Poly(vinyl alcohol) (PVA)/montmorillonite clay (MMT) nanocomposites in the form of films were prepared under the effect of electron beam irradiation. The PVA/MMT nanocomposites gels were characterized by X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical measurements. The study showed that the appropriate dose of electron beam irradiation to achieve homogeneous nanocomposites films and highest gel formation was 20 kGy. The introduction of MMT (up to 4 wt %) results in improvement in tensile strength, elongation at break, and thermal stability of the PVA matrix. In addition, the intercalation of PVA with the MMT clay leads to an impressive improved water resistance, indicating that the clay is well dispersed within the polymer matrix. Meanwhile, it was proved that the intercalation has no effect on the metal uptake capability of PVA as determined by a method based on the color measurements. XRD patterns and SEM micrographs suggest the coexistence of exfoliated intercalated MMT layers over the studied MMT contents. The DSC thermograms showed clearly that the intercalation of PVA polymer with these levels of MMT has no influence on the melting transitions; however, the glass transition temperature (Tg) for PVA was completely disappeared, even at low levels of MMT clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1129–1138, 2006  相似文献   

5.
The uniform dispersion of cellulose nanofibers (CNFs) in non‐polar polymer matrices is a primary problem to overcome in creating novel nanocomposites from these materials. The aim of this study was to produce CNF‐polyethylene (PE) nanocomposites by melt compounding followed by injection molding to investigate the possibility of using polyvinyl alcohol (PVA) to improve the dispersion of CNF in the PE matrix. The tensile strength of CNF‐ filled composites was 17.4 MPa with the addition of 5 wt % CNF–PVA, which was 25% higher than the strength of neat PE. The tensile modulus of elasticity increased by 40% with 5% CNF–PVA addition. Flexural properties also significantly increased with increased CNF loading. Shear viscosity increased with increasing CNF content. The elastic moduli of the PE/CNF composites from rheological measurements were greater than those of the neat PE matrix because of the intrinsic rigidity of CNF. Melt creep compliance decreased by about 13% and 45% for the composites with 5 wt % CNF and 10 wt % CNF, respectively. It is expected that the PVA carrier system can contribute to the development of a process methodology to effectively disperse CNFs containing water in a polymer matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42933.  相似文献   

6.
The mechanical properties and morphologies of polyblends of lyocell with three different fillers are compared. Poly(vinyl alcohol) (PVA), poly(vinyl alcohol‐co‐ethylene) (EVOH), and poly(acrylic acid‐co‐maleic acid) (PAM) were used as fillers in blends with lyocell produced through solution blending. The variations of their properties with polymer matrix filler content are discussed. The ultimate tensile strength of the PVA/lyocell blend is highest for a blend lyocell content of 30 wt %, and decreases as the lyocell content is increased up to 40 wt %. The ultimate tensile strengths of the EVOH/lyocell and PAM/lyocell blends are highest for a lyocell loading of 20 wt %, and decrease with the increasing filler content. The variations in the initial moduli of the blends with filler content are similar. Of the three blend systems, the blends with PVA exhibit the best tensile properties. Lyocell/organoclay hybrid films were prepared by the solution intercalation method, using dodecyltriphenylphosphonium–Mica (C12PPh‐ Mica) as the organoclay. The variation of the mechanical tensile properties of the hybrids with the matrix polymer organoclay content was examined. These properties were found to be optimal for an organoclay content of up to 5 wt %. Even polymers with low organoclay contents exhibited better mechanical properties than pure lyocell. The addition of organoclay to lyocell to produce nanocomposite films was found to be less effective in improving its ultimate tensile strength than blending lyocell with the polymers. However, the initial moduli of the nanocomposites were found to be higher than those of the polyblend films. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

7.
Soybean oil‐based polymer nanocomposites were synthesized from acrylated epoxidized soybean oil (AESO) combined with styrene monomer and montmorillonite (MMT) clay by using in situ free radical polymerization reaction. Special attention was paid to the modification of MMT clay, which was carried out by methacryl‐functionalized and quaternized derivative of methyl oleate intercalant. It was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of increased nanofiller loading in thermal and mechanical properties of the nanocomposites was investigated by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The nanocomposites exhibited improved thermal and dynamic mechanical properties compared with neat acrylated epoxidized soybean oil based polymer matrix. The desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt % whereas partially exfoliated nanocomposite was obtained in 3 wt % loading. It was found that about 400 and 500% increments in storage modulus at glass transition and rubbery regions, respectively were achieved at 2 wt % clay loading compared to neat polymer matrix while the lowest thermal degradation rate was gained by introducing 3 wt % clay loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2031–2041, 2013  相似文献   

8.
The linear viscoelastic properties of copolypropylene (cPP)–clay nanocomposites (cPPCNs) prepared by melt intercalating with different amounts of clay were extensively examined by rheological measurements. Meanwhile, the clay effects on the cPP confinements were first estimated by calculating the activation energy of different cPP moving units, including the whole molecular chain, the chain segment, and smaller unit such as chain link. The results showed that the stability of cPPCNs melts wrecked when the clay loading was above 5 wt %. An increase in clay loading of cPPCNs gave rise to a strong low frequency solid‐like response (G′ > G″). Unlike the matrix polymer, cPPCN5 (with 5 wt % clay) exhibited a relaxation plateau as relaxation time prolonged above 100 s, and displayed a maximal linear modulus. The variations of the activation energy of different cPP moving units revealed that the mobility of cPP molecular chains was restricted by clay layers, while these restrictions were not only related to the clay loadings but also largely depended on the clay dispersion status in the matrix. The motions of cPP chain segments were greatly limited at 3–5 wt % loading of clay, but drastically activated with the addition of 7 wt % clay due to the increasing stacks of clay layers within the matrix. However, it was found that the presence of clay had little effect on the mobility of small cPP moving units such as chain links. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1523–1529, 2006  相似文献   

9.
Polyamide‐6/clay nanocomposites were prepared employing melt bending or compounding technique followed by injection molding using different organically modified clays. X‐ray diffraction and transmission electron microscopy were used to determine the molecular dispersion of the modified clays within the matrix polymer. Mechanical tests revealed an increase in tensile and flexural properties of the matrix polymer with the increase in clay loading from 0 to 5%. C30B/polyamide‐6 nanocomposites exhibited optimum mechanical performance at 5% clay loading. Storage modulus of polyamide‐6 also increased in the nanocomposites, indicating an increase in the stiffness of the matrix polymer with the addition of nanoclays. Furthermore, water absorption studies confirmed comparatively lesser tendency of water uptake in these nanocomposites. HDT of the virgin matrix increased substantially with the addition of organically modified clays. DSC measurements revealed both γ and α transitions in the matrix polymer as well as in the nanocomposites. The crystallization temperature (Tc) exhibited an increase in case of C30B/polyamide‐6 nanocomposites. Thermal stability of virgin polyamide‐6 and the nanocomposites has been investigated employing thermogravimetric analysis. POLYM. COMPOS., 28:153–162, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
We present the first study and results on the preparation and characterization of montmorillonite clay filler based polymer blend nanocomposites of the miscible poly(phenylene oxide)/polystyrene blend. Intercalated nanocomposites, prepared by a melt‐processing method with 2–6 wt % commercially available organically modified sodium montmorillonite, have been characterized with wide‐angle X‐ray diffraction, transmission electron microscopy analysis, thermal analysis (thermogravimetric analysis and differential scanning calorimetry), and mechanical tensile tests. We show that nanocomposites can be successfully prepared in a batch mixer at temperatures much below the conditions conventionally used for this blend without organic degradation. Thermal stability is enhanced by nanoscale hybrid formation. The level of intercalation (change in the d‐spacing) does not change with the clay loading. Better dispersion of clay in the blend matrix has been observed at a low level of clay content. The nanocomposites show improved tensile modulus (by 31%) in comparison to the blend, whereas the tensile strength (stress at break) and elongation decrease in the presence of the filler with an increase in the clay loading. The Halpin–Tsai model is able to predict the modulus of the nanocomposites in very good agreement with the experimental data. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
The nanocomposite films comprising polymer blends of poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), poly(ethylene oxide) (PEO), and poly(ethylene glycol) (PEG) with montmorillonite (MMT) clay as nanofiller were prepared by aqueous solution casting method. The X‐ray diffraction studies of the PVA–x wt % MMT, (PVA–PVP)–x wt % MMT, (PVA–PEO)–x wt % MMT and (PVA–PEG)–x wt % MMT nanocomposites containing MMT concentrations x = 1, 2, 3, 5 and 10 wt % of the polymer weight were carried out in the angular range (2θ) of 3.8–30°. The values of MMT basal spacing d001, expansion of clay gallery width Wcg, d‐spacing of polymer spherulite, crystallite size L and diffraction peak intensity I were determined for these nanocomposites. The values of structural parameters reveal that the linear chain PEO and PEG in the PVA blend based nanocomposites promote the amount of MMT intercalated structures, and these structures are found relatively higher for the (PVA–PEO)–x wt % MMT nanocomposites. It is observed that the presence of bulky ester‐side group in PVP backbone restricts its intercalation, whereas the adsorption behavior of PVP on the MMT nanosheets mainly results the MMT exfoliated structures in the (PVA–PVP)–x wt % MMT nanocomposites. The crystallinities of the PEO and PEG were found low due to their blending with PVA, which further decreased anomalously with the increase of MMT concentration in the nanocomposites. The decrease of polymer crystalline phase of these materials confirmed their suitability in preparation of novel solid polymer nanocomposite electrolytes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40617.  相似文献   

12.
Layered‐silicate‐based polymer–clay nanocomposite materials were prepared depending on the surface modification of montmorillonite (MMT). Nanocomposites consisting of poly(butylene terephthalate) (PBT) as a matrix and dispersed inorganic clay modified with cetyl pyridinium chloride (CPC), benzyl dimethyl N‐hexadecyl ammonium chloride, and hexadecyl trimethyl ammonium bromide by direct melt intercalation were studied. The organoclay loading was varied from 1 to 5 wt %. The organoclays were characterized with X‐ray diffraction (XRD) to compute the crystallographic spacing and with thermogravimetric analysis to study the thermal stability. Detailed investigations of the mechanical and thermal properties as well as a dispersion study by XRD of the PBT/clay nanocomposites were conducted. X‐ray scattering showed that the layers of organoclay were intercalated with intercalating agents. According to the results of a differential scanning calorimetry analysis, clay acted as a nucleating agent, affecting the crystallization. The PBT nanocomposites containing clay treated with CPC showed good mechanical properties because of intercalation into the polymer matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Low density polyethylene (LDPE)/clay nanocomposites, which can be used in packaging industries, were prepared by melt‐mix organoclay with polymer matrix (LDPE) and compatibilizer, polyethylene grafted maleic anhydride (PEMA). The pristine clay was first modified with alkylammonium salt surfactant, before melt‐mixed in twin screw extruder attached to blown‐film set. D‐spacing of clay and thermal behavior of nanocomposites were characterized by Wide‐Angle X‐ray Diffraction (WAXD) and differential scanning calorimetry (DSC), respectively. WAXD pattern confirmed the increase in PEMA contents exhibited better dispersion of clay in nanocomposites. Moreover, DSC was reported the increased PEMA contents caused the decrease in degree of crystallinity. Mechanical properties of blown film specimens were tested in two directions of tensile tests: in transverse tests (TD tests) and in machine direction tests (MD tests). Tensile modulus and tensile strength at yield were improved when clay contents increased because of the reinforcing behavior of clay on both TD and MD tests. Tensile modulus of 7 wt % of clay in nanocomposite was 100% increasing from neat LDPE in TD tests and 17% increasing in MD tests. However, elongation at yield decreased when increased in clay loading. Oxygen permeability tests of LDPE/clay nanocomposites also decreased by 24% as the clay content increased to 7 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
A new liquid–liquid method for the synthesis of epoxy nanocomposites was developed. This new method improved the dispersion and exfoliation of the organoclay in the polymer matrix, thus improving the end‐use properties. The microstructure and physical properties of the clay/epoxy nanocomposite synthesized by the new method were studied. Rheological tests of the uncured epoxy–organoclay system demonstrated that this method resulted in a great increase in viscosity, much more than the most commonly used direct‐mixing method. The Krieger–Dougherty model successfully described the dispersion of the clay layers in the uncured epoxy. In the 5 wt % organoclay nanocomposite, compressive tests on the cured samples showed that there was a 45% increase in the maximum strength, a 10% increase in the yield strength, and a 26% increase in the modulus over the pure epoxy–amine cured system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4286–4296, 2006  相似文献   

15.
Polyimide (PI)/clay hybrids were synthesized using the in situ solution intercalation method via poly(amic acid). The Na ion‐exchanged clays Na+‐saponite (SPT), Na+‐mica (Mica), and Na+‐montmorillonite (MMT) were used for the intercalation of PI polymer chains. Our dispersion results show that pristine SPT is more easily dispersed in a PI matrix than MMT or Mica. PI nanocomposites were prepared with various SPT contents to examine the variations with SPT content in the range 0–1 wt% of the thermomechanical properties, morphology, and optical transparency of the nanocomposites. The PI films have excellent optical transparencies, and are almost colorless. However, the optical transparency of the PI hybrid films decreases slightly with increases in the clay content. We also examined the relationship between the properties and clay content of the PI hybrid films using wide‐angle X‐ray diffraction (XRD) measurements, electronic microscopy (SEM and TEM), and universal tensile machine (UTM). The color intensities of the PI films were evaluated with a spectrophotometer. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
Nanocomposites with unique material properties have been prepared from synthetic plastics and nanosilicates (nanoclay) until now, but not from biopolymers such as starch. The primary challenge in making biopolymeric nanocomposites is to achieve strong adhesion between nanoclay and polymer matrix. For the first time nanocomposites with superior properties have been successfully made from starch‐polycaprolactone (PCL) blends in the presence of montmorillonite (MMT) nanoclay. Reactive extrusion results showed that addition of a modified nanoclay at 3 % wt level increased elongation almost fourfold over that of pristine starch–PCL blends. X‐ray diffractions results showed dispersion of clay in the polymer matrix. The nanocomposites have better solvent‐resistance properties because of resistance to diffusion offered by clay platelets in the polymer matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
A poly(amic acid) was prepared through the reaction of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride and 2,2′‐bis(trifluoromethyl) benzidine in N,N‐dimethylacetamide. Hybrid films were obtained from blend solutions of the precursor polymer and the organoclay dodecyltriphenylphosphonium–mica, with the organoclay content varying from 0 to 1.0 wt %. The cast films of poly(amic acid) were heat‐treated at different temperatures to create polyimide (PI) hybrid films. These PI hybrid films showed excellent optical transparency and were almost colorless. The intercalation of PI chains in the organoclay was examined with wide‐angle X‐ray diffraction and electron microscopy. In addition, the thermomechanical properties were tested with differential scanning calorimetry and thermogravimetric analysis, and the gas permeability was determined. The addition of only a small amount of the organoclay was sufficient to improve the thermal and mechanical properties of the PI, with the maximum enhancement being observed with 0.5 wt % organoclay. However, the water vapor permeability decreased with the clay loading increasing from 0 to 0.5 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
In polymer nanocomposite synthesis, the challenges are achieving well dispersion of nanofiller and its maximum interfacial interaction with polymer matrix at low loading percent. In this study, the preparation of poly (vinyl alcohol) (PVA) nanocomposites with l ‐phenylalanine‐functionalized graphene (f‐graphene) using a simple water solution processing method is reported. Graphene layers were functionalized with l ‐phenylalanine amino acid as a biocompatible and environmentally friendly modifier. The obtained PVA/f‐graphene nanocomposite membranes were smooth, uniform, and flexible. Efficient interaction was found between f‐graphene and PVA matrix, which caused significant improvement in mechanical and thermal properties of the graphene‐based nanocomposite with homogeneous dispersion. POLYM. COMPOS., 37:1924–1935, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
A polyisoimide based on 4,4′‐oxydiphthalic dianhydride and 4,4′‐oxydianiline was synthesized and used for the preparation of nanocomposites with commercial organoclays by the solution dispersion technique. The cast composite films were heat‐treated to convert them into polyimide nanohybrid films. Homogeneous dispersions were obtained at lower clay concentrations (<5 wt %), and this was confirmed by X‐ray diffraction and transmission electron microscopy. The nanocomposites displayed improved thermal and mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 869–874, 2006  相似文献   

20.
The aim of this work is the production of new nanocomposites from metallocene polyethylene‐octene elastomer (POE), montmorillonite and biodegradable starch by means of a melt blending method. Characterizations of clay, modified clay, POE, POE‐g‐AA, and the hybrids produced from polymer, clay, and/or starch were performed by X‐ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectrophotometer, differential scanning calorimetry (DSC), thermogravimetry analyzer (TGA), scanning electron microscope (SEM), and Instron mechanical tester. As to the results, organophilic clay can be well dispersed into acrylic acid grafted polyethylene‐octene elastomer (POE‐g‐AA) in nanoscale sizes since cetyl pyridium chloride is partially compatible with POE‐g‐AA and allows POE‐g‐AA chains to intercalate into clay layers. Based on consideration of thermal and mechanical properties, it is also found that 12 wt % of clay content is optimal for preparation of POE‐g‐AA/clay nanocomposites. The new partly biodegradable POE‐g‐AA/clay/starch hybrid could obviously improve the elongation and the tensile strength at break of the POE‐g‐AA/starch hybrid since the former can give the smaller starch phase size and nanoscale dispersion of silicate layers in the polymer matrix. The nanocomposites produced from our laboratory can provide a stable tensile strength at break when the starch content is up to 40 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 397–404, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号