首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have been developing a new optical wiring technology for installing indoor optical fiber cables directly into apartment houses for fiber to the home. The technology must minimize the friction of optical fiber cable. We reviewed many studies on friction behavior, and studied the friction properties of a wide variety of polymer sheets and optical fiber cables, and considered the friction mechanism. Relatively, soft polymer materials exhibited stick‐slip behavior and the hard polymers exhibited constant slip behavior. Lubricants are effective in reducing friction and play a dominant role as regards the friction property. Silicon and fluorocarbon agents play some role in converting the stick‐slip characteristic into constant slip behavior. A certain roughness is effective in reducing friction. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers.  相似文献   

2.
A continuous stabilization and carbonization process was used to prepare polyacrylonitrile (PAN)-based carbon fibers. The stepwise stabilization of PAN fibers was tried at various temperatures. The effect of stepwise stabilization on the physical properties and microstructure of the final carbon fibers is reported in this article. The fixed temperature in stepwise stabilization is kept below the fusion temperature of PAN precursors to avoid overstabilization of the fibers. The optimum stepwise stabilization process not only increases the amount of ladder polymer in stabilized fiber but also improves the physical and mechanical properties of the resultant carbon fibers. The formation of closed pores from open pores in carbon fiber occurs at 1100°C, but the formation of closed pores occurs at 200°C lower for carbon fiber developed from overstabilized fiber. The effect of continuous stepwise stabilization on the properties of resulting stabilized fibers and the variation in physical properties, element composition, and microstructure of carbon fibers during the carbonization process are also reported in this article.  相似文献   

3.
This article reports the design and deployment of two optical‐fiber temperature sensors based on the fiber Fabry–Perot etalon. The first involved the use of an extrinsic fiber Fabry–Perot sensor, but in this instance, the coefficient of thermal expansion of the reflector and/or capillary was chosen to offer a mismatch. Hence, the cavity length could increase or decrease according to the coefficient of thermal expansion of the fiber and/or capillary. For comparison, single‐mode and multimode optical‐fiber Bragg gratings were also used as temperature sensors. The Fabry–Perot sensors operated from ?50 to 410°C. The accuracy of the measurements was up to ±0.5°C with a low‐cost charged‐coupling‐device spectrometer. The sensors also worked effectively in a microwave oven and in a composite panel in an autoclave. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 83–95, 2004  相似文献   

4.
Melt blowing involves applying a jet of hot air to an extruding polymer melt and drawing the polymer stream into microfibers. This study deals with the dynamic modeling of the instabilities and related processes during melt blowing. A bead‐viscoelastic element model for fiber formation simulation in the melt blowing process was proposed. Mixed Euler‐Lagrange approach was adopted to derive the governing equations for modeling the fiber motion as it is being formed below a melt‐blowing die. The three‐dimensional paths of the fiber whipping in the melt blowing process were calculated. Predicted parameters include fiber diameter, fiber temperature, fiber stress, fiber velocity, and the amplitude of fiber whipping. The mathematical model provides a clear understanding on the mechanism of the formation of microfibers during melt blowing. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The development of fiber orientation in injection molding was manipulated by a special molding tool, the RCEM mold, which imposes a rotation action by one of the cavity surfaces during the filling stage. Center‐gated disc moldings were produced from glass fiber reinforced polypropylene with different cavity rotation velocities, inducing distinct distributions and levels of fiber orientation. The morphologies of the moldings were characterized by optical and electronic microscopy. The through‐thickness profiles of fiber orientation were assessed by means of the orientation tensor, and the relationship between the processing thermo‐mechanical environment and the fiber orientation was established. At high rotation velocities, the resulting fiber orientation pattern is mainly controlled by the rotational motion, inducing a much more homogeneous through‐the‐thickness fiber orientation distribution, with a preferential alignment on the circumferential direction. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

6.
The nonisothermal crystallization of polypropylene resins, i‐PP, during injection molding, using an optical device inserted in the injection mold cavity was monitored. The device detected the change of optical properties which occurs in polymers during their crystallization process; thus the intensity of a laser beam after it passed through the crystallizing polymer was measured during an injection molding cycle. The collected light intensity after the end of the cycle was correlated with the morphologies and final crystallinity degree of the samples. The influence of nucleating agents and the change of the parameters of the injection molding process on the morphology and optical signals were also investigated. The morphologies were analyzed by polarized light optical microscopy, PLOM. The % of crystallinity of the samples was measured by wide angle X‐rays diffraction, WAXS. It was concluded that the optical device was sensible to different polymer crystallization kinetics, morphology type, and changes in the injection molding parameters. It was also found that the mold temperature and packing pressure and time were the factors that affected most the kinetics of crystallization of these polymers in this particular disk geometry. The WAXS results showed that the lower the final light intensity the higher the % of crystallinity in the samples. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

7.
Flow‐induced orientation of the conductive fillers in injection molding creates parts with anisotropic electrical conductivity where through‐plane conductivity is several orders of magnitude lower than in‐plane conductivity. This article provides insight into a novel processing method using a chemical blowing agent to manipulate carbon fiber (CF) orientation within a polymer matrix during injection molding. The study used a fractional factorial experimental design to identify the important processing factors for improving the through‐plane electrical conductivity of plates molded from a carbon‐filled cyclic olefin copolymer (COC) containing 10 vol% CF and 2 vol% carbon black. The molded COC plates were analyzed for fiber orientation, morphology, and electrical conductivity. With increasing porosity in the molded foam part, it was found that greater out‐of‐plane fiber orientation and higher electrical conductivity could be achieved. Maximum conductivity and fiber reorientation in the through‐plane direction occurred at lower injection flow rate and higher melt temperature. These process conditions correspond with foam flow during filling of the mold cavity, indicating the importance of shear stress on the effectiveness of a fiber being rotated out‐of‐plane during injection molding. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
The production of short polymer optical fibers from small material batches is valuable for materials research, especially in the investigation of copolymers. A two‐step fiber drawing process is usually used for this purpose. The drawing temperature of the individual materials is an important parameter in the process. Temperature measurements using contactless methods are preferred because they enable online monitoring and do not affect the drawing process. Such measurements can be carried out with a pyrometer, which allows the measurement of a wide range of temperatures but requires a precise adjustment of the spot to the core of the preform. To circumvent this limitation, a thermographic camera with a resolution of 134 µm per pixel in the heating zone is used. The measurement range 0–250 °C is suitable for the usual drawing conditions. The device is installed outside the resistive heating furnace. The absolute temperature is obtained by calibrating the sensor to the beam path and the material emission properties. Different materials, shapes and thicknesses lead to variations in these parameters. In this work, an analysis of the temperature calibration for poly(methyl methacrylate), poly(styrene) and the copolymers poly[styrene‐co‐(isobornyl methacrylate)] and poly[(methyl methacrylate)‐co‐(isobornyl methacrylate)] is presented. These are all thermoplastic polymers and may be used for the fabrication of polymer optical fibers. © 2018 Society of Chemical Industry  相似文献   

9.
An analytical model of mechanical behavior of carbon fiber reinforced polymer composites using an advanced discrete element model (DEM) coupled with imaging techniques is presented in this article. The analysis focuses on composite materials molded by vacuum assisted resin transfer molding. The molded composite structure consists of eight‐harness carbon fiber fabrics and a high‐temperature polymer. The actual structure of the molded material was captured in digital images using optical microscopy. DEM was developed using the image‐based‐shape structural model to predict the composite elastic modulus, stress–strain response, and compressive strength. An experimental case study is presented to evaluate the accuracy of the developed analytical model. The results indicate that the image‐based DEM micromechanical model showed fairly accurate predictions for the elastic modulus and compressive strength. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
A doped poly(methyl methacrylate) (PMMA)–based graded‐index plastic optical fiber (GI POF) with high mechanical strength is reported for the first time. Although the POF is generally believed to have a good mechanical flexibility even if it has a large‐core diameter, such a high mechanical strength has been provided by making the polymer chains in the POF highly oriented in its axial direction. If such an orientation of polymer chains is eliminated, the POF becomes brittle, which is similar to silica‐based fibers. On the other hand, too high an orientation of the polymer chains induces fiber deformation in a high‐temperature atmosphere resulting from orientation relaxation. This study reports how high mechanical strengths such as the tensile strength and the large elongation are provided to the GI POF. By selecting the optimum heat‐drawing conditions, the GI POF has a mechanical strength comparable to that of the commercially available step index (SI) POF. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 404–409, 2004  相似文献   

11.
A gas‐solid‐liquid three‐phase model for the simulation of fiber‐reinforced composites mold‐filling with phase change is established. The influence of fluid flow on the fibers is described by Newton's law of motion, and the influence of fibers on fluid flow is described by the momentum exchange source term in the model. A revised enthalpy method that can be used for both the melt and air in the mold cavity is proposed to describe the phase change during the mold‐filling. The finite‐volume method on a non‐staggered grid coupled with a level set method for viscoelastic‐Newtonian fluid flow is used to solve the model. The “frozen skin” layers are simulated successfully. Information regarding the fiber transformation and orientation is obtained in the mold‐filling process. The results show that fibers in the cavity are divided into five layers during the mold‐filling process, which is in accordance with experimental studies. Fibers have disturbance on these physical quantities, and the disturbance increases as the slenderness ratio increases. During mold‐filling process with two injection inlets, fiber orientation around the weld line area is in accordance with the experimental results. At the same time, single fiber's trajectory in the cavity, and physical quantities such as velocity, pressure, temperature, and stresses distributions in the cavity at end of mold‐filling process are also obtained. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42881.  相似文献   

12.
A unique methodology employing a “nearly co‐continuous morphology” for processing immiscible polymers into strong fiber is presented, and an immiscible polypropylene/polystyrene (PP/PS) blend is used as a model system to demonstrate the effectiveness of this methodology. The “nearly co‐continuous morphology” is easier to obtain than the fully co‐continuous structure, and yet, it provides an engineering solution to the production of strong fiber from an immiscible polymer blend. In addition, a process different from traditional melt spinning is used to prepare fiber with good mechanical properties. Traditional melt spinning involves large jet stretch and therefore introduces large interfacial orientation but little molecular orientation in polymer blends. To address this issue, the PP/PS blend is spun with nearly zero jet stretch and after solidification undergoes hot drawing at temperature close to the glass transition temperature of PS. This process sequence imparts a large degree of molecular orientation to the PP phase and produces a strong fiber. The proposed methodology can be extended to other blend systems and provides a potential route for directly recycling commingled polymer waste without preseparation or compatibilization. POLYM. ENG. SCI., 59:2052–2061, 2019. © 2019 Society of Plastics Engineers  相似文献   

13.
Rapid heat cycle molding (RHCM) is a newly developed injection molding technology in recent years. In this article, a new electric heating RHCM mold is developed for rapid heating and cooling of the cavity surface. A data acquisition system is constructed to evaluate thermal response of the cavity surfaces of the electric heating RHCM mold. Thermal cycling experiments are implemented to investigate cavity surface temperature responses with different heating time and cooling time. According to the experimental results, a mathematical model is developed by regression analysis to predict the highest temperature and the lowest temperature of the cavity surface during thermal cycling of the electric heating RHCM mold. The verification experiments show that the proposed model is very effective for accurate control of the cavity surface temperature. For a more comprehensive analysis of the thermal response and temperature distribution of the cavity surfaces, the numerical‐method‐based finite element analysis (FEA) is used to simulate thermal response of the electric heating RHCM mold during thermal cycling process. The simulated cavity surface temperature response shows a good agreement with the experimental results. Based on simulations, the influence of the power density of the cartridge heaters and the temperature of the cooling water on thermal response of the cavity surface is obtained. Finally, the effect of RHCM process on surface appearance and tensile strength of the part is studied. The results show that the high‐cavity surface temperature during filling stage in RHCM can significantly improve the surface appearance by greatly improving the surface gloss and completely eliminating the weld line and jetting mark. RHCM process can also eliminate the exposing fibers on the part surface for the fiber‐reinforced plastics. For the high‐gloss acrylonitrile butadiene styrene/polymethyl methacrylate (ABS/PMMA) alloy, RHCM process reduces the tensile strength of the part either with or without weld mark. For the fiber‐reinforced plastics of polypropylene (PP) + 20% glass fiber, RHCM process reduces the tensile strength of the part without weld mark but slightly increases the tensile strength of the part with weld mark. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
The properties of poly(methyl methacrylate) (PMMA)‐based graded‐index polymer optical fiber (GI POF), including the thermal stability, thermal humidity, and mechanical properties, were studied for polymer optical fiber research and applications. The glass‐transition temperature of the fiber core was 103°C in the presence of the dopant, which was close to that of the PMMA matrix without the dopant. A special refractive‐index profile derived from the distribution of the dopant was stable at 60°C. Moreover, GI POF exhibited good mechanical properties. The excellent performance indicated that GI POF could be applied not only for indoor use but also for outdoor use. However, PMMA‐based GI POF exhibited poor hot‐water/humidity resistance. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2330–2334, 2004  相似文献   

15.
Melt‐blown webs from ester and ether thermoplastic polyurethanes and polyether‐block‐amide (PEBA) elastomers were produced at different die‐to‐collector distances (DCD) to study the correlation between the polymer type and hardness, melt‐blowing process conditions, and web properties. An experimental set up was built to measure the air temperature and velocity profiles below and across the melt‐blowing die to correlate the fiber formation process and polymer crystallization behavior to process conditions and web properties. It was shown that air temperature and velocity profiles follow similar trends with increasing distance below the melt‐blowing die: both drop rapidly until reaching a plateau region approximately 5–6 cm below the die. Thereafter, they remain relatively constant with further increasing distance. It was found that crystallization onset and peak temperatures of all block copolymers in this study fall within this region of rapid velocity and temperature drop. This suggests that the polymers have already started to crystallize and solidify before reaching the collector, the extent of which depends on the crystallization kinetics of the polymer. The strong influence of the crystallization kinetics on web strength was clearly demonstrated in the PEBA series. In particular, the hardest grade produced the lowest web strength mainly because of its high crystallization rate and crystallization onset temperature. It is concluded that the melt‐blown web strength is strongly dependent on the degree of fiber‐to‐fiber adhesion within the web, which is determined by the amount of fiber solidification that occurs prior to the collector. The crystallization kinetics of the polymer and the distances traveled between the die and collector or the exposure time of the polymer melt to process and ambient air were shown to be critical in the amount of fiber solidification attained. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
挤出法制备聚合物光纤过程中光纤直径的在线监测   总被引:1,自引:0,他引:1  
孙静  闫宝瑞  李庆春 《塑料》2005,34(4):97-100
聚合物光纤相对于石英光纤有许多优点。简要介绍了挤出法制备聚合物光纤(POF)的工艺流程和激光测径仪的工作原理。重点介绍了聚合物光纤直径在线监测的实现方法。以激光测径仪为测量手段,通过其RS232串行通信接口发送数据。基于虚拟仪器软件平台LabVIEW,编写了数据采集以及处理程序,实现了对直径数据的采集、显示、保存、分析等功能。  相似文献   

17.
Polymer–polymer materials consist of a thermoplastic matrix and a thermoplastic reinforcement. Recent research activities concentrate on the manufacturing of semi‐finished polymer–polymer materials in other shapes than the commercially available tapes and sheets. In particular, a pellet‐like form provides the possibility of processing the polymer–polymer material by injection and compression molding. Nevertheless, the thermoplastic reinforcement is vulnerable to excessive heat and the processing usually needs special attention. The current study investigates the processing of long‐polymer‐fiber reinforced thermoplastic pellets, namely polypropylene‐polyethylene terephthalate and a single‐polymer polyethylene terephthalate, by extrusion for subsequent compression molding applications. The flow characteristics of the material as well as the preservation of the polymer reinforcement can be handled by accurate temperature control. The tensile and impact properties decrease with increasing process temperature though. Moreover, the results prove that the use of a common long‐fiber reinforced thermoplastic process chain is applicable to the newly developed polymer–polymer material. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39716.  相似文献   

18.
When a short fiber of a thermotropic liquid‐crystalline polymer retracts in a quiescent, flexible polymer matrix, the polydomain texture inside the fiber evolves simultaneously. We have demonstrated experimentally that the two processes are coupled. The dynamic interfacial tension, determined from the retraction of the short fiber, decreases with time. On the other hand, we have determined the aspect ratio of the polydomains inside the fiber through the power spectra of two‐dimensional discrete Fourier transformations of polarized optical microscopy images. The polydomains are initially elongated and aligned with the fiber axis. As the fiber retracts into a spherical drop, the polydomains first retract into a circular shape and then are squeezed into elongated shapes perpendicular to the original fiber axis. An exponential function correlates the evolution of the dynamic interfacial tension with that of the aspect ratio of the textures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3114–3120, 2006  相似文献   

19.
A solution blow spinning technique was developed using elements of both electrospinning and melt blowing technologies as an alternative method for making non‐woven webs of micro‐ and nanofibers with diameters comparable with those made by the electrospinning process with the advantage of having a fiber production rate (measured by the polymer injection rate) several times higher. The diameters of fibers produced ranged from 40 nm for poly(lactic acid) to several micrometers for poly(methyl methacrylate). This solution blow spinning method uses a syringe pump to deliver a polymer solution to an apparatus consisting of concentric nozzles whereby the polymer solution is pumped through the inner nozzle while a constant, high velocity gas flow is sustained through the outer nozzle. Analysis of the process showed that pressure difference and shearing at the gas/solution interface jettisoned multiple strands of polymer solution towards a collector. During flight, the solvent component of the strands rapidly evaporates forming a web of micro and nanofibers. The effect of injection rate, gas flow pressure, polymer concentration, working distance, and protrusion distance of the inner nozzle was investigated. Polymer type and concentration had a greater effect on fiber diameter than the other parameters tested. Injection rate, gas flow pressure, and working distance affected fiber production rate and/or fiber morphology. Fibers were easily formed into yarns of micro‐ and nanofibers or non‐woven films that could be applied directly onto biological tissue or collected in sheets on a rotating drum. Indeed, virtually any type of target could be used for fiber collection. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
An air‐drawing model of polypropylene (PP) polymer and an air jet flow field model in wide‐slot positive‐pressure spunbonding process are established. The influences of the density and the specific heat capacity of polymer melt at constant pressure changing with polymer temperature on the fiber diameter have been studied. The predicted fiber diameter agrees with the experimental data as well. The effects of the processing parameters on the fiber diameter have been investigated. The air jet flow field model is solved by means of the finite difference method. The numerical simulation computation results of distribution of the fiber diameter match quite well with the experimental data. The air‐drawing model of polymers is solved with the help of the distributions of the air velocity. It can be concluded that the higher air velocity and air temperature can yield the finer fibers diameter. The higher inlet pressure, longer drawing segment length, smaller air knife edge, longer exit length, smaller slot width, and smaller jet angle can all cause higher air velocity and air pressure along z‐axis position, which are beneficial to the air drawing of the polymer melt and thus to reduce the fiber diameter. The experimental results show that the agreement between the predicted results and the experimental measured data is very better, which verifies the reliability of these models. Also, they reveal great prospects for this work in the field of computer‐assisted design (CAD) of spunbonding process. POLYM. ENG. SCI., 58:1371–1380, 2018. © 2017 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号