首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unsaturated Polyester (UP) resin is widely used for many applications such as reinforced plastic (FRP) and polymer composites. However, these materials suffer from their low mechanical and thermal properties. For enhancing their performance, researchers have used Tunisian montmorillonite (MMT) for manufacturing of unsaturated polyester-montmorillonite (UP-MMT) nanocomposite synthesized by dispersing the UP resin into the silicate layers of MMT. The MMT has been modified ammonium quaternary as organic cation (OMMT). Test results, supported by mechanical testing, X-ray diffraction, thermal analysis (DSC and TGA) and transmission electron microscopy, indicated that the mechanical properties and the thermal stability of unsaturated polyester with OMMT nanocomposite (UP/OMMT) are better than those of pure UP. The degradation temperature increased by 78 °C with the addition of organic modification, and SEM micrographs show good dispersion of modified montmorillonite in the polymer matrix. Tensile strength is increased by 81 % for the UP/OMMT nanocomposite.  相似文献   

2.
Allyl phenyl compounds, allyl epoxy resins, and epoxy acrylate resins are adapted to copolymerize with bismaleimide (BMI) resins and to modify mechanical properties and processing properties. Reaction activity, physical properties, mechanical properties, dielectric properties, and thermal stability were investigated. Impact strength and flexural strength of modified BMI resin are increased about twice and 42% than that of pure BMI resin, respectively. Fracture elongation is from 1.6 to 2.3%. The fracture surfaces of the broken specimens are examined by scanning electron microscopy (SEM). As a result, modified BMI resins put up typical toughness rupture. The modified BMI resins possess excellent dielectric properties, and dielectric constant and dielectric loss almost hold the line with increasing epoxy concentration. When the test frequency scope is from 1 to 20 GHz, the dielectric constant and dielectric loss of modified BMI resins is 3.05–3.12 and 0.0089–0.012, respectively. The modified BMI resins still possess fine properties after hydrothermal aging. After 100 h in boiling water, the reservation ratios of both the impact strength and flexural strength of modified system exceeded 90%, and the water absorption and heat distortion temperature (HDT) is 2.6% and 235°C, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 315–319, 2006  相似文献   

3.
利用4,4^ -二苯甲烷型双马来酰亚胺(BMD)作为共聚单体与不饱和聚酯(UP)进行共聚改性,对这一共聚体系的性能进行了研究:研究结果表明:双马来酰亚胺的引入对UP树脂的力学性能造成一定影响,尤其显著提高了共聚物热分解温度和热变形温度。从BMD的分子结构来看,BMD是四官能度,而且BMD具有优先与苯乙烯反应生成交替共聚物的倾向,提高了网络交联密度,在宏观上表现为共聚物的热性能及力学性能的变化。另外,红外光谱的分析表明双马来酰亚胺与不饱和聚酯固化形成交联网络。  相似文献   

4.
Interpenetrating networks of varying percentages of bismaleimide (BMI) in vinyl ester oligomer (VEO) modified unsaturated polyester (UP) matrices have been developed. Vinyl ester oligomer was prepared by reacting commercially available epoxy resin GY 250 (Ciba‐Geigy) and acrylic acid, and used as a toughening agent for unsaturated polyester resin. Unsaturated polyesters modified with 10, 20, and 30 wt % vinyl ester oligomer were made. The VEO toughened unsaturated polyester matrix systems, further modified with 5, 10, and 15 wt % bismaleimide (BMI). BMI–VEO–UP matrices were characterized using differential scanning calorimetry, thermogravimetric analysis, and heat deflection temperature analysis. The matrices, in the form of castings, were characterized for their mechanical properties according to ASTM methods: tensile strength, flexural strength, and unnotched Izod impact test. Data obtained from mechanical studies and thermal characterization indicate that the introduction of VEO and BMI into unsaturated polyester resin improves thermomechanical properties according to their percentage concentration. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2502–2508, 2002  相似文献   

5.
对苯酚进行分子设计,使对苯二甲基二甲醚(PXDM)与苯酚在碱性催化剂的作用下发生醚交换反应,生成一种对苯二苯基二甲醚结构,再将其与多聚甲醛在碱性条件下反应制备改性酚醛树脂。采用核磁共振波谱仪,红外光谱仪对改性酚醛树脂的结构进行了表征,并研究了改性剂PXDM的引入对改性酚醛树脂耐热性能的影响。结果表明:成功合成了改性酚醛树脂,且其质量损失5%时的温度及负荷变形温度较普通酚醛树脂分别提高了97.8,46.4℃;经过热老化后,改性酚醛树脂的力学性能损失明显小于普通酚醛树脂,说明改性酚醛树脂具有更优异的耐热性能和良好的热稳定性。  相似文献   

6.
Unsaturated polyester resin (UP) was prepared from glycolyzed oligomer of poly(ethylene terephthalate) (PET) waste based on diethylene glycol (DEG). New diacrylate and dimethacrylate vinyl ester resins prepared from glycolysis of PET with tetraethylene glycol were blended with UP to study the mechanical characteristics of the cured UP. The vinyl ester resins were used as crosslinking agents for unsaturated polyester resin diluted with styrene, using free‐radical initiator and accelerator. The mechanical properties of the cured UP resins were evaluated. The compressive properties of the cured UP/styrene resins in the presence of different vinyl ester concentrations were evaluated. Increasing the vinyl ester content led to a pronounced improvement in the compression strength. The chemical resistances of the cured resins were evaluated through hot water, solvents, acid, and alkali resistance measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3175–3182, 2007  相似文献   

7.
Cyanate esters with excellent high‐temperature properties and easy processing are well known as good resin materials used in aerospace and electrical industries, but the drawback of brittleness limits their usage. In this study, carboxyl‐terminated liquid butadiene‐acrylonitrile (CTBN) was introduced to improve the toughness of bisphenol A dicyanate resin (BADCy), a typical kind of the cyanate esters. Fourier transform infrared spectroscopy and differential scanning calorimetry were employed to investigate the effects of CTBN on the curing behavior of BADCy; the results indicate that the addition of CTBN has a great influence on the curing behavior of BADCy at lower temperatures, but little at higher temperatures. Data from the thermogravimetric analysis and heat deflection temperature analysis showed that the thermal properties of the modified systems were poorer than that of pristine BADCy resin. On the basis of the scanning electron micrographs of the modified systems, toughening mechanism of the systems was discussed. Mechanical and dielectric properties of the cured resins and glass fiber‐reinforced composites were also studied. Modified systems exhibit attractive properties for the future applications in aerospace industries. POLYM. ENG. SCI. 46:581–587, 2006. © 2006 Society of Plastics Engineers.  相似文献   

8.
Three grades of liquid urea-formaldehyde (UF) resin with different formaldehyde emission levels such as super E0 (SE0), E0 and E1 were modified by adding different amounts of microfibrillated cellulose (5 wt% MFC and 95 wt% water) that had been isolated by mechanical disintegration of pulp fibers. Thermal properties of these UF resins were investigated to understand thermal curing and degradation behaviors of the modified UF resins, using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC thermograms showed an exothermic curing reaction, and the curing peak temperature of modified UF resins heavily depended on the emission resin grade with an increasing order from E1, E0 to SE0. The addition of MFC suspension into the UF resins gradually increased curing peak temperature suggesting a decrease in the resin reactivity. TGA results showed three main thermal degradation temperatures for the modified UF resins except the SE0 UF resin, which had four degradation temperatures.  相似文献   

9.
采用KH570对介孔二氧化硅SBA-15进行表面处理,通过原位聚合方法合成SBA-15/不饱和聚酯(UP)复合树脂,后再通过共混、辊炼、模压成型制备了SBA-15/UP复合材料。研究了加入SBA-15对SBA-15/UP复合材料的摩擦磨损性能、硬度、动态力学性能的影响,通过扫描电子显微镜(SEM)对复合材料的磨损表面形貌进行观察。结果表明,经改性后的SBA-15加入使复合材料的体积磨损率降低了26%,玻璃化温度提高了16℃。  相似文献   

10.
以含硅多芳炔化合物(PSA)与1,3,5-三叠氮甲基-2,4,6-三甲基苯(TAMTMB)为原料,通过1,3-偶极环加成反应制备了新型含硅聚三唑树脂Si-PTA3,考察了树脂的流变性能、固化行为、热性能及单体配比对其热性能的影响。采用模压法制备了单向T700碳纤维增强的Si-PTA3树脂复合材料T700/Si-PTA3,测定了其力学性能。结果表明,Si-PTA3树脂具有良好的加工性能,可在80℃下固化,耐热性较好;炔基与叠氮基摩尔比为1.1:1.0时树脂固化物的热性能最好,玻璃化转变温度达334℃,在氮气中热失重5%时的温度达351℃;复合材料T700/Si-PTA3常温下的弯曲强度高于1670 MPa,250℃时弯曲强度保留率超过67%。  相似文献   

11.
Cyanate ester resins are a high performance class of compounds. They have excellent mechanical properties, dielectric properties and thermal properties; however, their major drawback is their brittleness. An attempt was made to improve the impact strength of the cyanate ester resin. In the present study a commonly used cyanate resin, bisphenol A dicyanate (BADCy), was modified by the addition of diallyl phthalate (DAP) and was cured with benzoyl peroxide. The properties of the blends such as thermal and mechanical properties were investigated in detail by scanning electron microscope, dynamic mechanical analysis, thermogravimetric analysis, and mechanical measurement. The results indicate that the addition of the appropriate amount of DAP can effectively improve the impact toughness and the flexural strength while sacrificing the thermal properties of the blends. The maximum impact strength and flexural strength were observed on addition of 15 phr DAP content. However, the thermal stability of the blends was found to be lower than that of the unmodified BADCy resin.  相似文献   

12.
以烯丙基化合物改性的方法制得了改性双马来酰亚胺三嗪(BT)树脂,研究了改性BT树脂体系的固化动力学,求得表观活化能为45.9 kJ/mol,反应级数为0.842,确定了固化工艺,并采用力学性能分析和动态热机械分析等手段对树脂浇铸体的性能进行了研究.结果表明,对于烯丙基化合物改性BT树脂体系,二烯丙基双酚A具有改善双马来...  相似文献   

13.
In this article, propargyl functionalized novolac resins (PN resins), with varying propargyl contents and varying molecular weights, were synthesized conveniently. The structural characteristics were determined by 1HNMR and FTIR methods. Thermal cure studies revealed that the uncatalyzed thermal cure was remarkably affected by propargyl extent, while it was hardly affected by molecular weight. The processability of the as‐prepared PN resins was excellent as matrix of composite materials. The cure mechanism was complicated; postcure at high temperature was required to achieve entire crosslink formation. Both dynamic mechanical analysis and thermogravimetric analysis showed that the cured PN resins had substantially improved thermal mechanical properties and thermal stability in comparison to conventional cured phenolics. High propargyl extent was preferred for high thermal stability. The results show that PN resin is one of the ideal candidates for advanced composites matrices in thermostructural and ablative applications. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1010–1017, 2006  相似文献   

14.
首先研究了PT/BADCy二元树脂体系的力学性能和耐热性能,结果表明:BADCy的加入可以改善PT树脂韧性,体系中PT树脂比例越高,灼烧后混合树脂的残留率越高.还重点研究了PT/BADCy/PASF三元树脂体系,力学分析表明:PASF的加入,大大提高了体系的韧性,当含量为10%wt时,常温、200℃以及300℃剪切强度分别为20.88、22.78、14.36MPa,90°常温剥离强度为26.89N/cm.热学分析表明:不同含量PASF的三元树脂体系的热降解趋势基本一致,高温灼烧后残留率大致相同.PASF树脂的耐热性、耐灼烧型与PT/BADCy相当,三者可以实现理想匹配.  相似文献   

15.
Stiff and brittle cyanate ester (CE) resin was modified by copolymerizing it with epoxy resin (ER) and phenolic resin (PR) to improve its toughness and flexibility. The cure process of the modified CE resin was characterized by gel time curves and differential scanning calorimetry curves. The Fourier transform infrared spectra of the modified CE resin showed its chemical structure during the curing process. The mechanical properties, thermal behavior, dielectric properties, and morphology of the modified CE resins were investigated. The results showed that an increase in epoxy and phenolic resins resulted in improved flexibility while maintaining thermal stability. When the mass ratio of CE/ER/PR was 70 : 15 : 15 (w/w), flexural strength and impact strength of the modified CE resin increased from 113.6 MPa and 5.2 kJ/m2 to 134.5 MPa and 16.7 kJ/m2, respectively. Little of the thermal stabilityand dielectric properties was sacrificed in the modification of the CE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3150–3156, 2007  相似文献   

16.
A thermosetting resin system, bismaleimide (BMI) modified allyl novolac (BAN), was developed via reactive blending of formaldehyde and catalyst drop wise to improve the extent of reaction between BMI and phenol‐carbenium ions. For improving the curing behavior and mechanical properties, dicumyl peroxide (DCP) was selected as a novel curing initiator to compare with hexamethylenetetramine (HTMA) which is the most common curing initiator used in the manufacture of phenolic resins. BAN was characterized by 1H nuclear magnetic resonance and Fourier transfer infrared spectroscopy. Curing behavior with initiators was analyzed by differential scanning calorimetry and glass transition temperature of the cured resins was examined by dynamic mechanical analysis. For evaluating efficiency of the modified system, composite samples using polyvinyl acetyl fiber were molded and tested for flexural properties before and after ageing at 150°C for 1,000 h. The morphology of composite samples was examined by scanning electron microscope, and the effects of the incorporated initiators on the mechanical and thermal properties of composite were investigated. The results indicated that the initiators reduced the curing temperature effectively and improved the curing process. DCP proved to be more effective in crosslinking and heat resistance than HTMA. Meanwhile, the molded composite with DCP showed higher mechanical properties before and after ageing when compared with HTMA curing initiator. Therefore, DCP/BAN resin system with good heat resistance, higher mechanical properties, and better process ability can be applied as matrix resin for the manufacturing of advanced fiber reinforced composites. POLYM. COMPOS., 37:2260–2271, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
Unsaturated polyester (UP) resin is one of the major thermosetting resins and is very useful as a matrix resin of composite material for its processibility. UP resin, however, has several shortcomings: it is weak in alkalis, volume shrinkage occurs during the crosslinking reaction of the oligomeric UP resin with a styrene monomer, and it is also brittle. The mechanical properties of UP resin can be enhanced by blending it with various materials. In this study, polyurethane (PU) was used as a modifier to improve the toughness of the UP resin. The effect of the polyol molecular weight as a PU soft segment and the PU contents on the toughness of PU‐modified UP resins were studied. A UP/PU polymer network may occur through a reaction between an isocyanate group in the methyl diisocyanate (MDI) and a hydroxyl one in the UP molecules. The maximum toughness was observed at approximately 2 wt % of the PU content. These results can be rationalized by the incorporation of a rubbery PU segment into a brittle UP resin. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 735–740, 2002; DOI 10.1002/app.10169  相似文献   

18.
A new propargyl‐functional resin, propargyl ether bisphenol A novolac (PBPN), was synthesized, and the structure of PBPN were characterized using 1H NMR and FTIR spectra. The PBPN was blended with 4,4′‐bismaleimide diphenyl methane (BDM) at different molar ratio to obtain the blends. Differential scanning calorimetry (DSC) was used to characterize the cure behavior of PBPN and the blends. Thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were performed, respectively, to evaluate thermal stability and dynamic mechanical properties of the cured resins. The results indicate that the PBPN presented better cure and thermal properties than do traditional propargyl resins; furthermore, the cure behavior and thermal properties of PBPN could be improved remarkably by blending with BDM. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4207–4212, 2006  相似文献   

19.
An epoxy matrix system modified by diglycidylether‐terminated polydimethylsiloxane (DGETPDMS) and bismaleimide (BMI) was developed. Epoxy systems modified with 4, 8, and 12% (by wt) of DGETPDMS were made using epoxy resin and DGETPDMS, with diaminodiphenylmethane as the curing agent. The DGETPDMS‐toughened epoxy systems were further modified with 4, 8, and 12% (by wt) of BMI, namely (N,N′‐bismaleimido‐4,4′‐diphenylmethane). DGETPDMS/BMI/epoxy matrices were characterized using differential scanning calorimetry, thermogravimetric analysis, and heat deflection temperature analysis. The matrices, in the form of castings, were characterized for their mechanical properties, viz. tensile strength, flexural strength, and impact test, as per ASTM methods. Mechanical studies indicate that the introduction of DGETPDMS into epoxy resin improves the impact strength, with reduction in tensile strength, flexural strength, and glass transition temperature, whereas the incorporation of BMI into epoxy resin enhances the mechanical and thermal properties according to its percentage content. However, the introduction of both DGETPDMS and BMI enhances the values of thermomechanical properties according to their percentage content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 668–674, 2006  相似文献   

20.
采用双邻苯二甲腈树脂(BAPh)对环氧树脂E-44(EP)进行改性,同时制备了BAPh/EP/玻纤复合材料。采用示差扫描量热仪,热重分析,力学性能测试及氧指数仪研究了改性树脂的热性能、力学性能及阻燃性能,并对BAPh/EP/玻纤复合材料的力学性能进行了表征。结果表明,当BAPh质量分数达到50%时,改性树脂固化物在空气中的起始分解温度达到377.6℃,比纯环氧提高74.3℃,氧指数达到34.5%,复合材料的弯曲性能指标达到最大,添加双邻苯二甲腈后环氧树脂的耐热性、力学性能和阻燃性能得到了明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号