首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Fully bio‐based soy protein isolate (SPI) resins were toughened using natural rubber (NR) and epoxidized natural rubber (ENR). Resin compositions containing up to 30 wt % NR or ENR were prepared and characterized for their physical, chemical and mechanical properties. Crosslinking between SPI and ENR was confirmed using 1H‐NMR and ATR‐FTIR. All SPI/NR resins exhibited two distinctive drops in their modulus at glass transition temperature (Tg ) and degradation temperature (Td ) at around ?50 and 215 °C, corresponding to major segmental motions of NR and SPI, respectively. SPI/ENR resins showed similar Tg and Td transitions at slightly higher temperatures. For SPI/ENR specimens the increase in ENR content from 0 to 30 wt % showed major increase in Tg from ?23 to 13 °C as a result of crosslinking between SPI and ENR. The increase in ENR content from 0 to 30 wt % increased the fracture toughness from 0.13 to 1.02 MPa with minimum loss of tensile properties. The results indicated that ENR was not only more effective in toughening SPI than NR but the tensile properties of SPI/ENR were also significantly higher than the corresponding compositions of SPI/NR. SPI/ENR green resin with higher toughness could be used as fully biodegradable thermoset resin in many applications including green composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44665.  相似文献   

2.
Low temperature cure cyanate ester resin systems were developed and modified with epoxy‐terminated butadiene acrylonitrile rubber (ETBN) and impregnated into woven glass fabric. Mode I and mode II interlaminar fracture toughness values of the cured laminates were evaluated as a function of rubber concentration. Mode I fracture toughness increased to almost twice that of the unmodified system, while mode II fracture toughness remained essentially unchanged. Composite samples were subjected to aging experiments in water and the absorption/desorption behavior was investigated as was the effect on thermal performance. The presence of rubber was found to reduce the rate of matrix deterioration but also caused a substantial increase in water uptake. It was found that although the addition of rubber to the matrices decreased the unconditioned (dry) Tg all specimens showed the same reduction in Tg, after equilibrium water absorption.  相似文献   

3.
An attempt was made to toughen diglycidyl ether of bisphenol A (DGEBA) type epoxy resin with liquid natural rubber possessing hydroxyl functionality (HTLNR). Epon 250 epoxy monomer is cured using nadic methyl anhydride as hardener in presence of N, N dimethyl benzyl amine as accelerator. HTLNR of different concentrations up to 20 wt % is used as modifier for epoxy resin. The addition HTLNR to an anhydride hardener/epoxy monomer mixture has given rise to the formation of phase-separated structure, consisting of small spherical liquid natural rubber particles bonded to the surrounding epoxy matrix. The particle size increased with increase in rubber content. The viscoelastic properties of the blends were analyzed using dynamic mechanical thermal analysis. The Tg corresponding to epoxy rich phase was evident from the dynamic mechanical spectrum, while the Tg of the rubber phase was overlapped by the β relaxation of epoxy phase. Glass transition of the epoxy phase decreased linearly as a function of the amount of rubber. The mechanical properties such as impact and fracture toughness were also carefully examined. The impact and fracture toughness increase with HTLNR content. A threefold increase in impact strength was observed with 15 wt % HTLNR/epoxy blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Liquid nitrile rubber, hyperbranched polyester, and core/shell rubber particles of various functionality, namely, vinyl, carboxyl, and epoxy, were added up to 20 wt % to a bisphenol‐A‐based vinylester–urethane hybrid (VEUH) resin to improve its toughness. The toughness was characterized by the fracture toughness (Kc) and energy (Gc) determined on compact tensile (CT) specimens at ambient temperature. Toughness improvement in VEUH was mostly achieved when the modifiers reacted with the secondary hydroxyl groups of the bismethacryloxy vinyl ester resin and with the isocyanate of the polyisocyanate compound, instead of participating in the free‐radical crosslinking via styrene copolymerization. Thus, incorporation of carboxyl‐terminated liquid nitrile rubber (CTBN) yielded the highest toughness upgrade with at least a 20 wt % modifier content. It was, however, accompanied by a reduction in both the stiffness and glass transition temperature (Tg) of the VEUH resin. Albeit functionalized (epoxy and vinyl, respectively) hyperbranched polymers were less efficient toughness modifiers than was CTBN, they showed no adverse effect on the stiffness and Tg. Use of core/shell modifiers did not result in toughness improvement. The above changes in the toughness response were traced to the morphology assessed by dynamic mechanical thermal analysis (DMTA) and fractographic inspection of the fracture surface of broken CT specimens. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 672–680, 2002; DOI 10.1002/app.10392  相似文献   

5.
Miscible blends from plasticized poly(vinyl chloride), and epoxidized natural rubber having 50 mol% epoxidation level were prepared in a Brabender Plasticorder by the melt-mixing technique. Changes in Brabender torque and temperature, density, dynamic mechanical properties, and differential scanning calorimetry of the samples were examined as a function of blend composition. The plasticized poly(vinyl chloride)/epoxidized natural rubber blends behaved as a compatible system at all composition ranges as evident from their single glass-rubber transition temperature (Tg) obtained from dynamic mechanical analysis as well as from differential scanning calorimetry. Profound changes in the nature of the glass-rubber transition were noted with respect to blend composition. The Tg-width values of blends lie between those of plasticized poly(vinyl chloride) and epoxidized natural rubber.  相似文献   

6.
Thermomechanical and thermal properties of whey protein, maize prolamin protein (zein), and the laminated whey protein–zein films were studied. The dynamic mechanical (thermal) analysis (DMTA) results showed that the single zein film had higher Tg than single whey protein and zein–whey laminated films. The shift in the Tg values of films from 31.2°C in whey protein film and 88.5°C in the zein film to 82.8°C in the laminated whey protein–zein films may be implied some interaction formation between the two polymers. The small tan δ peaks were observed at ?50°C in zein–glycerol films and at ?22.37°C in the whey protein films and can be related to β‐relaxation phenomena or presence of glycerol rich region in polymer matrix. Zein‐olive oil and zein–whey protein–olive oil films showed tan δ peaks corresponded the Tg values at 113.8, and 92.4°C, respectively. Thus, replacing of glycerol with olive oil in film composition increased Tg. A good correspondence was obtained when DSC results were compared with the tan δ peaks in DMTA measurements. DSC thermograms suggested that plasticizers and biopolymers remained a homogeneous material throughout the cooling and heating cycle. The results showed that Tg of zein–glycerol films predicted by Couchman and Karasz equation is very close to value obtained by DSC experiments. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Poly(lactic acid)/poly(methyl methacrylate) blends containing halloysite nanotube (2 and 5 phr) and epoxidized natural rubber (5–15 phr) were prepared by melt mixing. The impact strength of poly(lactic acid)/poly(methyl methacrylate) blend was slightly improved by the addition of halloysite nanotube. Adding epoxidized natural rubber further increased the impact strength of poly(lactic acid)/poly(methyl methacrylate)/halloysite nanotube nanocomposite. Single Tg of poly(lactic acid)/poly(methyl methacrylate) is observed and this indicates that poly(lactic acid)/poly(methyl methacrylate) blend is miscible. The addition of halloysite nanotube into poly(lactic acid)/poly(methyl methacrylate) slightly increased the Tg of the blends. The epoxidized natural rubber could encapsulate some of the halloysite nanotube and prevent the halloysite nanotube from breaking into shorter length tube during the melt shearing process.  相似文献   

8.
Reaction after mixing of liquid epoxidized natural rubber/poly(L ‐lactide) blend was performed to enhance the compatibility of the blend. The liquid epoxidized natural rubber was prepared by epoxidation of deproteinized natural rubber with peracetic acid in latex stage followed by depolymerization with peroxide and propanal. The resulting liquid deproteinized natural rubber having epoxy group (LEDPNR) was mixed with poly(L ‐lactide) (PLLA) to investigate the compatibility of the blend through differential scanning calorimetry, optical light microscopy, and NMR spectroscopy. After heating the blend at 473 K for 20 min, glass transition temperature (Tg) of LEDPNR in LEDPNR/PLLA blend increased from 251 to 259 K, while Tg and melting temperature (Tm) of PLLA decreased from 337 to 332 K and 450 to 445 K, respectively, suggesting that the compatibility of LEDPNR/ PLLA blend was enhanced by a reaction between the epoxy group of LEDPNR and the ester group of PLLA. The reaction was proved by high‐resolution solid‐state 13C NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Carboxymethyl-β-cyclodextrin (CM-β-CD) and carboxyl terminated liquid nitrile rubber (CTBN) were used as binary component fillers in toughening the epoxy resin (E-54). For a single component filler system, the addition of CTBN resulted in significantly improved fracture toughness but reduction of glass transition temperature (Tg) and modulus of epoxy resin. On the other hand, the addition of CM-β-CD resulted in a modest increase in modulus and Tg, and significant improvement in toughness. This work provides a promising route of nanocomposites with excellent toughness. Besides the mechanism of synergistic toughening in this project was explained, and the major toughening mechanisms were attributed to interfacial micro-cracks, energy dissipation of CM-β- CD. This work gives us a further understanding of the modification effect of β- CD.  相似文献   

10.
Silica nanoparticles (SN) and epoxidized natural rubber (ENR) were used as binary component fillers in toughening diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine. For a single component filler system, the addition of ENR resulted in significantly improved fracture toughness (KIC) but reduction of glass transition temperature (Tg) and modulus of epoxy resins. On the other hand, the addition of SN resulted in a modest increase in toughness and Tg but significant improvement in modulus. Combining and balancing both fillers in hybrid ENR/SN/epoxy systems exhibited improvements in the Young’s modulus and Tg, and most importantly the KIC, which can be explained by synergistic impact from the inherent characteristics associated with each filler. The highest KIC was achieved with addition of small amounts of SN (5 wt.%) to the epoxy containing 5–7.5 wt.% ENR, where the KIC was distinctly higher than with the epoxy containing ENR alone at the same total filler content. Evidence through scanning electron microscopy (SEM) and transmission optical microscopy (TOM) revealed that cavitation of rubber particles with matrix shear yielding and particle debonding with subsequent void growth of silica nanoparticles were the main toughening mechanisms for the toughness improvements for epoxy. The fracture toughness enhancement for hybrid nanocomposites involved an increase in damage zone size in epoxy matrix due to the presence of ENR and SN, which led to dissipating more energy near the crack-tip region.  相似文献   

11.
Toughened unsaturated polyester resins (UPRs) were prepared using two different reactive rubbers, namely, liquid natural rubber (LNR) and liquid epoxidized natural rubber (LENR). The effect of varying amounts of LNR and LENR on the morphology, thermal, and mechanical properties of UPR were evaluated. Fourier Transform Infrared spectroscopy was used to investigate the probable crosslinking reaction and changes in the functional groups on crosslinking. Field emission scanning electron microscopy and infinite focus microscopy were used to study the morphology of fracture surfaces. Tensile test showed that both the rubber‐modified resins (1.5 wt %) improved tensile strength. The viscoelastic properties and thermal stability of the toughened polyesters were evaluated using dynamic mechanical thermal analysis and thermogravimetric analysis, respectively. A slight reduction in the glass transition temperature (Tg) of the polyester was reported on the addition of both the rubbers. An increment in impact strength and fracture toughness was observed at 1.5 wt % for LNR and 4.5 wt % for LENR‐modified UPR. The results showed that both the liquid rubbers improved the mechanical properties of UPR. However, LENR‐modified UPR exhibited a more significant improvement in the mechanical properties compared to LNR‐modified UPR. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41292.  相似文献   

12.
The role of rubber particle cavitation resistance on toughening of epoxy resins is still unresolved. In this research, the role of rubber particle cavitation resistance was exclusively studied. Two types of core‐shell rubber (CSR) particles with different cavitation resistances were utilized for modifying epoxy resin. Matrix crosslink density (XLD) was varied by using nonstoichiometric amounts of hardener. Fracture toughness values of neat and CSR‐modified epoxy samples decreased with lowering of XLD via deviation from stoichiometric point. It was resulted by higher modulus and lower elongation at break of the nonstoichiometric samples, and also antiplasticization of epoxy networks resulted from suppression of β‐transition relaxation motions. In all XLDs, the CSR particles with higher core Tg and modulus yielded higher fracture energy. Results showed that core properties such as Tg and modulus of CSR particles had a significant effect on toughening of the epoxy networks. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
Epoxy composites filled with phase‐separation formed submicron liquid rubber (LR) and preformed nanoscale powdered rubber (PR) particles were prepared at different filler loading levels. The effect of filler loading and type on the rheological properties of liquid epoxy resin suspensions and the thermal and mechanical properties of the cured composites as well as the relative fracture behaviors are systematically investigated. Almost unchanged tensile yield strength of the cured epoxy/PR composites is observed in the tensile test compared with that of the neat epoxy; while the strength of the cured epoxy/LR composites shows a maximum value at ∼4.5 wt% and significantly decreases with increasing LR content. The glass transition temperature (Tg) of the cured PR/epoxy has shifted to the higher temperature in the dynamic mechanical thermal analysis compared with that of the cured pure epoxy and epoxy/LR composites. Furthermore, the presence of LR results in highly improved critical stress intensity factor (KIC) of epoxy resin compared with the corresponding PR nanoparticles. In particular, the PR and LR particles at 9.2 wt% loading produce about 69 and 118% improvement in KIC of the epoxy composites, respectively. The fracture surface and damage zone analysis demonstrate that these two types of rubber particles induce different degrees of local plastic deformation of matrix initiated by their debonding/cavitation, which was also quantified and correlated with the fracture toughness of the two epoxy/rubber systems. POLYM. COMPOS., 36:785–799, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
While a great diversity of rubber/plastic damping blends have been reported, the damping trough resulted from phase incompatibility, which usually exists between the glass transition temperatures (Tg) of each component, remains an unsolved problem by separating the effective temperature range of damping blends. Herein, we reported a new and facile way of preparing rubber/plastic binary blends with high damping property by eliminating the inherent damping trough. Specifically, we envisaged that peroxides can trigger free radical reactions both within and between epoxidized natural rubber/diallyl phthalate prepolymer moieties, which serve as the co‐vulcanizer to generate interphase reactions thus enhancing phase compatibility. Accordingly, apart from the resulting high damping epoxidized natural rubber40/diallyl phthalate prepolymer binary blends with an effective (tan δmin > 0.35) temperature range of 178 °C from −33 to 145 °C, the proposal has also been demonstrated via the support of broadband dielectric spectrometer testing, dynamic mechanical analysis, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46300.  相似文献   

15.
The use of phosphorus for improving flame retardancy of natural rubber vulcanizates was attempted by incorporating a modified form of natural rubber. By reacting epoxidized liquid natural rubber (ELNR) with dibutylphosphate it was possible to chemically modify the polymer. On a 25% epoxidized LNR, 5.2–6.8% w/w of phosphorus could be fixed on the polymer backbone. The reaction carried out in bulk and solution resulted in products with different Tg values probably due to the varying crosslink levels in the resultant products. Chemical analysis of the modified polymers prepared by two sets of reactions under identical conditions proved the reproducibility of the reactions in bulk and in solution. Incorporation of the phosphorus-modified ELNR in a natural rubber formulation decreased the flammability behaviors of the vulcanizate. On the other hand, a decrease of the rate of curing and mechanical properties was observed. The phosphorus addition could also be carried out by mixing ELNR and dibutylphosphate at the time of mixing the compounds and resulted in equally good flame retardance with relatively better processing and mechanical properties. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
This study has evaluated three low‐viscosity epoxy additives as potential tougheners for two epoxy resin systems. The systems used were a lower‐reactive resin based upon the diglycidyl ether of bisphenol A (DGEBA) and the amine hardener diethyltoluene diamine, while the second epoxy resin was based upon tetraglycidyl methylene dianiline (TGDDM) and a cycloaliphatic diamine hardener. The additives evaluated as potential tougheners were an epoxy‐terminated aliphatic polyester hyperbranched polymer, a carboxy‐terminated butadiene rubber and an aminopropyl‐terminated siloxane. This work has shown that epoxy‐terminated hyperbranched polyesters can be used effectively to toughen the lower cross‐linked epoxy resins, i.e. the DGEBA‐based systems, with the main advantage being that they have minimal effect upon processing parameters such as viscosity and the gel time, while improving the fracture properties by about 54 % at a level of 15 wt% of additive and little effect upon the Tg. This result was attributed to the phase‐separation process producing a multi‐phase particulate morphology able to initiate particle cavitation with little residual epoxy resin dissolved in the continuous epoxy matrix remaining after cure. The rubber additive was found to impart similar levels of toughness improvement but was achieved with a 10–20 °C decrease in the Tg and a 30 % increase in initial viscosity. The siloxane additive was found not to improve toughness at all for the DGEBA‐based resin system due to the poor dispersion within the epoxy matrix. The TGDDM‐based resin systems were found not to be toughened by any of the additives due to the lack of plastic deformation of the highly cross‐linked epoxy network Copyright © 2003 Society of Chemical Industry  相似文献   

17.
A copolymer comprising poly(oxymethylene) (POM, polyacetal) was used to improve the fracture toughness of a resin based on diglycidyl ether of bisphenol A (DGEBA) cured with 3,3′-dimethyl-5,5′-diethyl-4,4′-diaminodiphenyl methane. POM was a less effective modifier for epoxies and a third component was used as a toughener or a compatibilizer for POM. The third component includes polypropylene glycol-type urethane prepolymer (PU) and aromatic polyesters. The hybrid modifiers composed of POM and PU were more effective as modifiers for toughening epoxies than POM alone. In the ternary DGEBA/POM/PU (90/10/10wt ratio) blend, the fracture toughness, KIC, for the modified resin increased 50% with retention of flexural properties and a slight decrease in glass transition temperature (Tg) compared with those of the unmodified epoxy resin. The aromatic polyesters include poly(ethylene phthalate) (PEP), the related copolyesters and poly(butylene phthalate). PEP was most effective of them as a third component in the hybrid modifier. In the ternary DGEBA/POM/PEP (85/15/10) blend, KIC for the modified resin increased 70% with medium loss of flexural strength and retention of Tg. The toughening mechanism is discussed in terms of morphological and dynamic viscoelastic behaviour of the modified epoxy resin systems. ©1997 SCI  相似文献   

18.
To overcome serious rigidity depression of rubber‐toughened plastics and fabricate a rigidity‐toughness balanced thermoplastic, a combination of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) and ethylene‐propylene rubber (EPR) was used to toughen polypropylene. The dynamic mechanical properties, crystallization and melting behavior, and mechanical properties of polypropylene (PP)/EPR/SEEPS blends were studied in detail. The results show that the combination of SEEPS and EPR can achieve the tremendous improvement of low‐temperature toughness without significant strength and rigidity loss. Dynamic mechanical properties and phase morphology results demonstrate that there is a good interfacial strength and increased loss of compound rubber phase comprised of EPR component and EP domain of SEEPS. Compared with PP/EPR binary blends, although neither glass transition temperature (Tg) of the rubber phase nor Tg of PP matrix in PP/EPR/SEEPS blends decreases, the brittle‐tough transition temperature (Tbd) of PP/EPR/SEEPS blends decreases, indicating that the increased interfacial interaction between PP matrix and compound rubber phase is also an effective approach to decrease Tbd of the blends so as to improve low‐temperature toughness. The balance between rigidity and toughness of PP/EPR/SEEPS blends is ascribed to the synergistic effect of EPR and SEEPS on toughening PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45714.  相似文献   

19.
In this article, 2,2′‐bis[4‐(4‐maleimidephen‐oxy)phenyl)]propane (BMPP) resin and N,N‐4,4′‐bismaleimidodiphenylmethyene (BDM) resin blends were modified by diallyl bisphenol A (DABPA). The effects of the mole concentration of BMPP on mechanical properties, fracture toughness, and heat resistance of the modified resins were investigated. Scanning electron microscopy was used to study the microstructure of the fractured modified resins. The introduction of BMPP resin improves the fracture toughness and impact strength of the cured resins, whose thermal stabilities are hardly affected. Dynamic mechanical analysis shows that the modified resins can maintain good mechanical properties at 270.0°C, and their glass transition temperatures (Tg) are above 280.0°C. When the mole ratio of BDM : BMPP is 2 : 1(Code 3), the cured resin performs excellent thermal stability and mechanical property. Its Tg is 298°C, and the Charpy impact strength is 20.46 KJ/m2. The plane strain critical stress intensity factor (KIC) is 1.21 MPa·m0.5 and the plane strain critical strain energy release rate (GIC) is 295.64 J/m2. Compared with that of BDM/DABPA system, the KIC and GIC values of Code 3 are improved by 34.07% and 68.10%, respectively, which show that the modified resin presented good fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40395.  相似文献   

20.
A novel approach for toughening thermosetting epoxy matrices using both thermoplastics and liquid reactive rubbers as modifiers has been investigated. The network structure of the modified epoxy systems was characterized using dynamic mechanical analysis, and the morphology of the multiphase structure was examined using scanning electron microscopy (SEM). To investigate the continuity of the phase domains, the constituents in the phase domains were positively identified using solving etching and RuO4 staining techniques for transmission electron microscopy (TEM). The fracture toughness of the modified and basic epoxy samples was measured using compact tension (CT) specimens. Quite limited toughness improvement was achieved for the epoxy modified with only the PSu thermoplastic, or the liquid rubber by itself. However, the fracture toughness was found to increase dramatically when a proper combination of both the liquid reactive rubber and thermoplastic was simultaneously incorporated into the epoxy. Toughening by using dual modifiers resulted in maximum improvement of fracture toughness with minimal compromises in processability and Tg depression by rubbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号