首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flax fiber‐reinforced polylactic acid (PLA) biocomposites were made using a new technique incorporating an air‐laying nonwoven process. Flax and PLA fibers were blended and converted to fiber webs in the air‐laying process. Composite prepregs were then made from the fiber webs. The prepregs were finally converted to composites by compression molding. The relationship between the main process variables and the properties of the biocomposite was investigated. It was found that with increasing flax content, the mechanical properties increased. The maximum tensile strength of 80.3 MPa, flexural strength of 138.5 MPa, tensile modulus of 9.9 GPa and flexural modulus of 7.9 GPa were achieved. As the molding temperature and molding time increased, the mechanical properties decreased. The thermal and morphological properties of the biocomposites were also studied. The appropriate processing parameters for the biocomposites were established for different fiber contents. POLYM. COMPOS., 34:1611–1619, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
This article aims to the development of polylactide (PLA)/triticale straw biocomposites with focus on the relationship between triticale straw content, additive presence, processing, and final properties. Prior to melt compounding, the triticale straw used in this study was chopped using the paper process to produce triticale particles that were further pelletized to assure a consistent feed rate into the extrusion line. PLA/triticale straw biocomposites were obtained for different triticale contents from 10 up to 40%vol, without and with maleic anhydride grafted polylactide (PLA‐g‐MA) as a coupling agent. As a supplementary additive, a PLA‐specific branching agent was used in some selected formulations to minimize the reduction in PLA's molecular weight. The biocomposites were characterized in terms of rheology, thermal properties, morphology, mechanical properties (tensile, flexural, and impact), and recyclability. The PLA‐g‐MA increased the tensile strength of biocomposites by 10%, whereas boosted the tensile modulus about 2.5 times at 40%vol triticale content. For the same formulation, the flexural strength was raised by 15% and flexural modulus was doubled. However, a combination of PLA‐g‐MA and branching agent proved to be the best approach to enhance PLA/triticale straw mechanical properties. When 20%vol of triticale was used as reinforcement, the presence of branching agent increased the flexural strength about 25%. The results demonstrate that the triticale straw processed in this way could offer a similar reinforcement capability as the cellulosic fibers based on the agricultural and forestry resources and can be easily recycled without losing its mechanical properties. It has a good potential in the biocomposites field with promising applications in construction, common goods, and transportation industries. POLYM. ENG. SCI., 54:446–458, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
In this study, ultrafine bamboo‐char (BC) was introduced into poly(lactic acid) (PLA) matrix to improve mechanical and thermal properties of PLA based biodegradable composites. PLA/BC biocomposites were fabricated with different BC contents by weight. Uniform dispersion of BC in the PLA matrix and good interaction via physical and chemical interfacial interlocks were achieved. The maximum tensile strength and tensile modulus values of 14.03 MPa and 557.74 MPa were obtained when 30% BC was used. Impact strength of the biocomposite with 30% BC was increased by 160%, compared to that of pure PLA. DSC analysis illustrated that PLA/BC biocomposites had a better thermal property. Crystallization temperature decreased and maximal crystallinity of 30.30% was observed with 30% BC load. We did not notice significant thermal degradation differences between biocomposites with different BC loadings from TGA. Better water resistance was obtained with the addition of BC. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43425.  相似文献   

4.
The synergetic association of poly(lactic acid) grafted with maleic anhydride (MA-g-PLA) containing 0.44 wt% of maleic anhydride and epoxy-functionalized graphene (GFe) on the properties of the designed nanocomposites was studied. Rheological, mechanical and barrier properties of PLA nanocomposites were studied using different content of epoxy-functionalized graphene and MA-g-PLA compatibilizer. The PLA/MA-g-PLA/GFe nanocomposites prepared by melt blending, containing 5 wt% of MA-g-PLA, yield a maximum in storage modulus G′ and a rheological plateau at low frequencies, with a content of epoxy-functionalized graphene comprised between 4 and 7 wt%. This phenomenon was ascribed to a pseudo-solid behavior resulting from the high degree of epoxy-functionalized graphene exfoliation due to strong interfacial interactions with PLA and epoxy-functionalized graphene. The better mechanical and barrier performances were obtained with PLA/GFe containing 10 wt% of epoxy-functionalized graphene and 5 wt% of MA-g-PLA compatibilizer. The variation of the percentage of compatibilizer showed that 5 wt% of maleated PLA was sufficient to improve the thermal, rheological, mechanical and barrier properties of the PLA nanocomposite containing 7 wt% of epoxy-functionalized graphene.  相似文献   

5.
In this work, the fabricated polylactic acid (PLA) and hybrid natural fiber (NF) biocomposites via a melt extrusion method were investigated. NFs from locally grown plants were utilized as fillers. Polyethene glycol (PEG) was used as the plasticizer to improve the processability of the PLA. The effect of PLA/NF biocomposite processing was assessed by mechanical characterization (tensile, modulus, strain at break, and impact tests), and thermal properties (thermogravimetric analysis and differential scanning calorimetry [DSC] analysis). The dynamic mechanical analysis (DMA), and thermo-mechanical analysis (TMA) of the samples were also analyzed. The mechanical properties of PLA/NF biocomposites improved as compared with that of PLA. The DMA findings show that the storage modulus and loss modulus exhibited a slight reduction for PLA/NF biocomposites compared with the PLA sample. In opposite, the glass transition temperature (Tg) from DSC thermogram results showed no obvious changes in values compared with the PLA sample. Furthermore, the findings of TMA showed a significant decrease in coefficient of thermal expansion values of PLA/NF biocomposites compared with those of PLA samples. The overall findings from this work indicated that PLA/NF biocomposites have the potential to make novel biocomposites and suitable for further application especially in biomedical applications due to its good stiffness, tensile strength, and dimensional stability.  相似文献   

6.
This article discusses the interrelation between formulation, processing, and properties of biocomposites composed of a bioplastic reinforced with wood fibers. Polylactide (PLA) and polylactide/thermoplastic starch blends (PLA/TPS) were used as polymeric matrices. Two grades of PLA, an amorphous and a semicrystalline one, were studied. TPS content in the PLA/TPS blends was set at 30, 50, and 70 wt%. Two types of wood fiber were selected, a hardwood (HW) and a softwood (SW), to investigate the effect of the fiber type on the biocomposite properties. Finally, the impact of different additives on biocomposite properties was studied with the purpose to enhance the bioplastic/wood fiber adhesion and, therefore, the final mechanical performance. The biocomposites containing 30 wt% of wood fibers were obtained by twin‐screw extrusion. The properties of the biocomposites are described in terms of morphology, thermal, rheological, and mechanical properties. Furthermore, the biocomposites were tested for humidity and water absorption and biodegradability. An almost 100% increase in elastic modulus and 25% in tensile strength were observed for PLA/wood fiber biocomposite with the best compatibilization strategy used. The presence of the TPS in the biocomposites at 30 and 50 wt% maintained the tensile strength higher or at least equal as for the virgin PLA. These superior tensile results were due to the inherent affinity between the matrices and wood fibers improved by the addition of a combination of coupling and a branching agent. In addition to their outstanding mechanical performance, the biocomposites showed high biodegradation within 60 days. POLYM. ENG. SCI., 54:1325–1340, 2014. © Her Majesty the Queen in Right of Canada 2013 1   相似文献   

7.
Sisal fiber (SF)‐reinforced poly(lactic acid) (PLA) biocomposites were prepared from biodegradable PLA and surface‐untreated or ‐treated short SF by melt mixing and subsequent compression molding. It is found that the surface treatments facilitate good adhesion between SFs and PLA matrix, which is consistent with the higher mechanical properties of the treated‐SF/PLA biocomposites. Moreover, the surface treatments have similar effects on the biodegradability and water absorption of the biocomposites with the order as following: neat PLA < acetylated SF (A‐SF)/PLA biocomposite ≈ silane‐treated SF (S‐SF)/PLA biocomposite < permanganate‐treated SF (P‐SF)/PLA biocomposite < mercerized SF (M‐SF)/PLA biocomposite < untreated fiber (U‐SF)/PLA biocomposite. In terms of overall consideration of the properties, acetylation treatment seems to be the most desirable surface method owing to the maximum tensile strength and water resistance, medium impact strength, and minimum degradability of the A‐SF/PLA biocomposite. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
In this study, all-green biocomposites based on poly(lactic acid) (PLA)/rice straw (RS) as an agricultural waste were prepared, and the physical, structural, and mechanical properties of these biocomposites were enhanced by alkali-pulping of RS and chemical grafting of PLA onto the lignocellulosic fiber. The reactive compatibilizers of maleic anhydride grafted PLA (PLA-g-MA) were obtained through a reactive extrusion process at different processing conditions. The probable chemical reactions between the functional groups of PLA-g-MA with hydroxyl groups of RS pulp as well as the end groups of PLA chains can effectively improve the interfacial adhesion between the filler and matrix. However, the findings confirm the great importance of PLA-g-MA chemical structure in controlling the biocomposite performance. By choosing proper processing conditions for preparing PLA-g-MA and incorporating this compatibilizer into the PLA/treated RS biocomposite, Young modulus, tensile strength, impact strength, and tensile toughness of the PLA/RS biocomposite increased by 101%, 156%, 96%, and 327%, respectively.  相似文献   

9.
An environmentally friendly bleached extruder chemi‐mechanical pulp fiber or wood flour was melt compounded with poly(lactic acid) (PLA) into a biocomposite and hot compression molded. The mechanical, thermal, and rheological properties were determined. The chemical composition, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that the hemicellulose in the pulp fiber raw material was almost completely removed after the pulp treatment. The mechanical tests indicated that the pulp fiber increased the tensile and flexural moduli and decreased the tensile, flexural, and impact strengths of the biocomposites. However, pulp fiber strongly reinforced the PLA matrix because the mechanical properties of pulp fiber‐PLA composites (especially the tensile and flexural strengths) were better than those of wood flour‐PLA composites. Differential scanning calorimetry analysis confirmed that both pulp fiber and wood flour accelerated the cold crystallization rate and increased the degree of crystallinity of PLA, and that this effect was greater with 40% pulp fiber. The addition of pulp fiber and wood flour modified the rheological behavior because the composite viscosity increased in the presence of fibers and decreased as the test frequency increased. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44241.  相似文献   

10.
In this study, acrylated epoxidized flaxseed oil (AEFO) resin is synthesized from flaxseed oil, and flax fiber reinforced AEFO biocomposites is produced via a vacuum‐assisted resin transfer molding technique. Different amounts of flax fiber and styrene are added to the resin to improve its mechanical and physical properties. Both flax fiber and styrene improve the mechanical properties of these biocomposites, but the flexural strength decreases with an increase in styrene content. The mass increase during water absorption testing is less than 1.5% (w/w) for all of the AEFO‐based biocomposites. The density of the AEFO resin is 1.166 g/cm3, which increases to 1.191 g/cm3 when reinforced with 10% (w/w) flax fiber. The flax fiber reinforced AEFO‐based biocomposites have a maximum tensile strength of 31.4 ± 1.2 MPa and Young's modulus of 520 ± 31 MPa. These biocomposites also have a maximum flexural strength of 64.5 ± 2.3 MPa and a flexural modulus of 2.98 ± 0.12 GPa. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41807.  相似文献   

11.
Polylactic acid (PLA) biocomposites were produced by a combination of extrusion and injection molding with three cellulosic reinforcements (agave, coir, and pine) and contents (10, 20, and 30%). In particular, some samples were subjected to thermal annealing (105 °C for 1 h) to modify the crystallinity of the materials. In all cases, morphological (scanning electron microscopy) and thermal (differential scanning calorimetry, dynamical mechanical thermal analysis) characterizations were related to the mechanical properties (Charpy impact, tensile and flexural tests). The results showed that annealing increased the crystallinity for all the materials produced, but different mechanical behaviors were observed depending on fiber type and content. For example, annealing increased the impact strength and flexural modulus of PLA and PLA biocomposites (agave, coir, and pine), while decreasing their flexural strength. But the main conclusion is that fiber addition combined with thermal annealing can substantially increase the thermal stability of the studied materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43750.  相似文献   

12.
The reinforcing effects of biocarbon of varying particle size ranges (crushed, <500, 500–426, 250–213, and <63 µm) on biobased polyamide 6,10 (PA 6,10) at 20 wt % loading were investigated for the resulting biocomposites. The heat deflection temperature and impact strength were observed to increase with reduction in particle size. Also, a 200% increase in the impact strength was observed in the biocomposite with biocarbon particles sized at <63 µm when compared to that with <500 µm. A 50% and 83% increase in the tensile and flexural moduli of the biocomposite with biocarbon particle size of <500 µm was observed, respectively, while the tensile strength was observed to remain unchanged. The flexural strength of the biocomposites was improved by 61% when compared to neat nylon. These results were due to good wetting, dispersion and increased surface area of the biocarbon within the nylon matrix. These results show the potential of biocarbon as reinforcing filler in nylon for applications especially in the automotive industry. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44221.  相似文献   

13.
Dicumyl peroxide (DCP) initiated reactive compatibilization of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV)/miscanthus fibers (70/30 wt %) based biocomposite was prepared in a twin screw extruder followed by injection molding. In the presence of DCP, both the flexural and the tensile strength of the PHBV/miscanthus composites were appreciably higher compared with PHBV/miscanthus composite without DCP as well as neat PHBV. The maximum tensile strength (29 MPa) and flexural strength (51 MPa) were observed in the PHBV/miscanthus composite with 0.7 phr DCP. The enhanced flexural and tensile strength of the PHBV/miscanthus/DCP composites are attributed to the improved interfacial adhesion by free radical initiator. Unlike flexural and tensile strength, the modulus of the PHBV/miscanthus/DCP composites was found to slightly lower than the PHBV/miscanthus composite. The modulus difference in the PHBV/miscanthus composite with and without DCP has good agreement with the observed crystallinity. However, the flexural and tensile modulus of all the prepared biocomposites was at least two fold higher than the neat PHBV. The storage modulus value of the PHBV/miscanthus and PHBV/miscanthus/DCP biocomposites follows similar trend like tensile and flexural modulus. The melting temperature and crystallization temperature of PHBV/DCP and PHBV/miscanthus/DCP samples were considerably lower compared with the neat PHBV and PHBV/miscanthus composites. The surface morphology revealed that the PHBV/miscanthus/DCP composites have good interface with less fiber pull‐outs compared with the corresponding counterpart without DCP. This suggests that the compatibility between the matrix and the fibers is enhanced after the addition of peroxide initiator. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44860.  相似文献   

14.
The objectives of this work were to seek a simple method for preparation of poly(lactic acid) (PLA) foams and evaluate properties of these foams for scaffold application. Using a typical blowing agent and compression molding, biocomposite foams were successfully prepared from a PLA/rubber wood sawdust (PLA/RWS) blend. Selection of RWS for the biocomposites was based on particle size. RWS particles in two size ranges were used: 212–600 μm and ≤75 μm. Alkaline and silane treatments were applied to the RWS before blending with PLA. The tensile properties, Izod impact strength, foam morphology, and thermal degradation of the biocomposite foams were evaluated. Cytotoxicity and in vitro degradation were tested to determine the potential of the biocomposite foam for use as a scaffold in tissue engineering. Silane treatment improved mechanical properties by increasing the interfacial adhesion between PLA and RWS. The density and void fraction of the foam samples had a greater effect on mechanical properties than pore size. Proliferation of MG-63 cells increased with culture time, indicating that the foam samples were not cytotoxic. Promising samples were tested for degradation in a lysozyme/phosphate-buffered saline and showed a slow rate of in vitro degradation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48259.  相似文献   

15.
Current study evaluates the effect of fiber surface treatments on the mechanical properties of banana fiber (BF) reinforced polylactic acid (PLA) biocomposites. Experimental results indicate increase in tensile modulus and strength upon surface treatments of BF with various silanes (APS and Si69) and NaOH. Approximately, an increase of 136% in tensile strength and 49% in impact strength was obtained in case of biocomposites with Si69‐treated BF compared with the untreated BF biocomposites. Also, experimentally determined mechanical modulus of untreated and surface‐treated BF biocomposite has been compared with the mechanical modulus calculated using various micromechanical models. Models such as Hirsch's, modified Bawyer and Bader's, and Brodnyan model showed good agreement with the experimentally determined results. Similarly, other models like Halpin‐Tsai, Nielson modified Halpin‐Tsai, and Cox's model also have been tried for the comparative study with the experimental data. Surface modification of BF showed increased interfacial adhesion between the fiber and the matrix which was evident from lowered difference between the experimentally and theoretically derived mechanical modulus. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Miscanthus fibers reinforced biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) matrix‐based biocomposites were produced by melt processing. The performances of the produced PBAT/miscanthus composites were evaluated by means of mechanical, thermal, and morphological analysis. Compared to neat PBAT, the flexural strength, flexural modulus, storage modulus, and tensile modulus were increased after the addition of miscanthus fibers into the PBAT matrix. These improvements were attributed to the strong reinforcing effect of miscanthus fibers. The polarity difference between the PBAT matrix and the miscanthus fibers leads to weak interaction between the phases in the resulting composites. This weak interaction was evidenced in the impact strength and tensile strength of the uncompatibilized PBAT composites. Therefore, maleic anhydride (MAH)‐grafted PBAT was prepared as compatibilizer by melt free radical grafting reaction. The MAH grafting on the PBAT was confirmed by Fourier transform infrared spectroscopy. The interfacial bonding between the miscanthus fibers and PBAT was improved with the addition of 5 wt % of MAH‐grafted PBAT (MAH‐g‐PBAT) compatibilizer. The improved interaction between the PBAT and the miscanthus fiber was corroborated with mechanical and morphological properties. The compatibilized PBAT composite with 40 wt % miscanthus fibers exhibited an average heat deflection temperature of 81 °C, notched Izod impact strength of 184 J/m, tensile strength of 19.4 MPa, and flexural strength of 22 MPa. From the scanning electron microscopy analysis, better interaction between the components can be observed in the compatibilized composites, which contribute to enhanced mechanical properties. Overall, the addition of miscanthus fibers into a PBAT matrix showed a significant benefit in terms of economic competitiveness and functional performances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45448.  相似文献   

17.
The aim of this study is to develop a light weight hybrid biocomposite using pineapple and Kevlar fiber with peanut husk cellulose in vinyl ester resin for applications in unmanned aerial vehicles. This study focuses on how the silane treatment on fiber and cellulose particle influences the mechanical, fatigue and low velocity impact properties of this hybrid biocomposites. Using hand lay-up technique, the biocomposite was prepared with cellulose loading ranging from 1 to 5 vol%. The results revealed that the 5 vol% of cellulose added composite had an improved tensile, impact, flexural, hardness and ILSS of 161 MPa, 224 MPa, 6.8 J, 84 shore-D and 21.4 MPa. Moreover, the biocomposite with the inclusion of 3 vol% cellulose had an improved fatigue life count of 42 697, 29 821, 22 381 and 18 164 at 25%, 50%, 75% and 90% of UTS. Similarly, the 3 vol% cellulose reinforced composite showed an improved low velocity impact toughness of 12.36 J. The obtained results clearly indicated that these mechanically strengthened and highly toughened biocomposites could be used as working material for number of applications, especially in making of UAVs for the aerospace industry, automotive components for the transportation sector and structural material in domestic infrastructure.  相似文献   

18.
Thermoplasticized starch (TPS) filled poly(lactic acid) (PLA) blends are usually found to have low mechanical properties due to poor properties of TPS and inadequate adhesion between the TPS and PLA. The purpose of this study was to investigate the reinforcing effect of wood fibers (WF) on the mechanical properties of TPS/PLA blends. In order to improve the compatibility of wood with TPS/PLA blends, maleic anhydride grafted PLA (MA‐g‐PLA) copolymer was synthesized and used. TPS, TPS/PLA blends, and WF reinforced TPS/PLA composites were prepared by twin‐screw extrusion and injection molded. Scanning electron microscope and crystallinity studies indicated thermoplasticity in starch. WF at two different weight proportions, that is, 20% and 40% with respect to TPS content were taken and MA‐g‐PLA at 10% to the total weight was chosen to study the effect on mechanical properties. At 20% WF and 10% MA‐g‐PLA, the tensile strength exhibited 86% improvement and flexural strength exhibited about 106% improvement over TPS/PLA blends. Increasing WF content to 40% further enhanced tensile strength by 128% and flexural strength by 180% with respect to TPS/PLA blends. Thermal behavior of blends and composites was analyzed using dynamic mechanical analysis and thermogravimetric analysis. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46118.  相似文献   

19.
A 32‐full factorial design of experiment (DOE) and regression modeling were implemented together as a practical approach to attain a distillers' grains‐filled biocomposite with balanced mechanical and physical properties. The effects of compatibilizer and lubricant on tensile strength, flexural modulus, impact strength and melt flow index of the biocomposites were studied. Analysis of variance (ANOVA) was implemented to develop least square regression models containing statistically significant main effects (linear and quadratic) and interaction effect. The developed models showed good predictability for the new measurements. The statistical approach adopted in this work including overlaying contour plots of the response surfaces in the studied level domain was effective in highlighting an optimized region that leads to balanced mechanical and physical properties. © 2014 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40443.  相似文献   

20.
选取机械球磨时间、机械球磨温度、模压时间三个变量进行Box-Benhnken实验,运用响应面法对聚乳酸(PLA)/木薯厌氧渣复合材料的制备工艺参数进行优化,得到各响应值与实验因素之间的数学关系模型,以及各因素对响应值的交互影响,确定PLA/木薯厌氧渣复合材料的拉伸强度及弯曲强度达最优值时,其工艺条件为:模压时间为5.99 min,机械球磨温度为59.01℃,机械球磨时间为33.42 min。在该工艺条件下制得的复合材料,其拉伸强度为44.125 6 MPa,弯曲强度为66.83 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号