首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gasification technology, which converts fossil fuels into either combustible gas or synthesis gas (syngas) for subsequent utilization, offers the potential of both clean power and chemicals. Especially, IGCC is recognized as next power generation technology which can replace conventional coal power plants in the near future. It produces not only power but also chemical energy sources such as H2, DME and other chemicals with simultaneous reduction of CO2. This study is focused on the determination of operating conditions for a 300 MW scale IGCC plant with various feedstocks through ASPEN plus simulator. The input materials of gasification are chosen as 4 representative cases of pulverized dry coal (Illinois#6), coal water slurry, bunker-C and naphtha. The gasifier model reflects on the reactivity among the components of syngas in the gasification process through the comparison of syngas composition from a real gasifier. For evaluating the performance of a gasification plant from developed models, simulation results were compared with a real commercial plant through approximation of relative error between real operating data and simulation results. The results were then checked for operating characteristics of each unit process such as gasification, ash removal, acid gas (CO2, H2S) removal and power islands. To evaluate the performance of the developed model, evaluated parameters are chosen as cold gas efficiency and carbon conversion for the gasifier, power output and efficiency of combined cycle. According to simulation results, pulverized dry coal which has 40.93% of plant net efficiency has relatively superiority over the other cases such as 33.45% of coal water slurry, 35.43% of bunker-C and 30.81% of naphtha for generating power in the range of equivalent 300 MW.  相似文献   

2.
The air separation unit (ASU) plays a key role in improving the efficiency, availability, and operability of an oxygen-fed integrated gasification combined cycle (IGCC) power plant. An optimal integration between the ASU and the balance of the plant, especially the gasifier and the gas turbine (GT), has significant potential for enhancing the overall plant efficiency. Considering the higher operating pressure of the GT, an elevated-pressure air separation unit (EP-ASU) is usually favored instead of the conventional low-pressure air separation units (LP-ASU). In addition, a pumped liquid oxygen (PLOX) cycle is usually chosen if the operating pressure of the gasifier is high. A PLOX cycle helps to improve plant safety and availability and to decrease the capital cost by reducing the size of the oxygen compressor or by eliminating it completely. However, the refrigeration lost in withdrawn liquid oxygen must be efficiently recovered. This paper considers five different configurations of an ASU with PLOX cycle and compares their power consumptions with an EP-ASU with a traditional gaseous oxygen (GOX) cycle. The study shows that an optimally designed EP-ASU with a PLOX cycle can have similar power consumption to that of an EP-ASU with GOX cycle in the case of 100% nitrogen integration. In the case of an IGCC with pre-combustion CO2 capture, the lower heating value (LHV) of the shifted syngas, both on a mass and volumetric basis, is in between the LHV of the unshifted syngas from an IGCC plant and the LHV of natural gas, for which the GTs are generally designed. The optimal air integration in the case of a shifted syngas is found to be much lower than that of an unshifted syngas. This paper concurs with the existing literature that the optimal integration occurs when air extracted from the GT can be replaced with the nitrogen from the ASU without exceeding mass/volumetric flow limitations of the GT. Considering nitrogen and air integration between the ASU and the GT, this paper compares the power savings in an LP-ASU with a PLOX cycle to the power savings in an EP-ASU with GOX cycle and EP-ASU with PLOX cycle. The results show that an LP-ASU with a PLOX cycle has less power consumption if the nitrogen integration levels are less than 50-60%. In addition, a study is carried out by varying the concentration of nitrogen and steam in the fuel diluents to the GT while the NOx level was maintained constant. The study shows that when the nitrogen injection rate exceeds 50%, an EP-ASU with a PLOX cycle is a better option than an LP-ASU with a PLOX cycle. This paper shows that an optimal design and integration of an ASU with the balance of the plant can help to increase the net power generation from an IGCC plant with CO2 capture.  相似文献   

3.
Various techniques have been developed to increase the efficiency of coal gasification. The use of a catalyst in the catalytic-steam gasification process lowers the activation energy required for the coal gasification reaction. Catalytic-steam gasification uses steam rather than oxygen as the oxidant and can lead to an increased H2/CO ratio. The purpose of this study was to evaluate the composition of syngas produced under various reaction conditions and the effects of these conditions on the catalyst performance in the gasification reaction. Simultaneous evaluation of the kinetic parameters was undertaken through a lab-scale experiment using Indonesian low rank coals and a bench-scale catalytic-steam gasifier design. The composition of the syngas and the reaction characteristics obtained in the lab- and bench-scale experiments employing the catalytic gasification reactor were compared. The optimal conditions for syngas production were empirically derived using lab-scale catalytic-steam gasification. Scale-up of a bench-scale catalytic-steam gasifier was based on the lab-scale results based on the similarities between the two systems. The results indicated that when the catalytic-steam gasification reaction was optimized by applying the K2CO3 catalyst to low rank coal, a higher hydrogen yield could be produced compared to the conventional gasification process, even at low temperature.  相似文献   

4.
In this study, the use of a hybrid coal integrated gasification combined-cycle (IGCC) system, consisting of a gasifier, a shift reactor and a membrane separator, has been examined. Two alternative separation options were studied: (a) low temperature separation, using polymer membranes, and (b) high temperature separation, by ceramic membranes. Single and multistage separation was examined for operation at 16 and 23 bar. The energy and cost analysis of the alternative cases show that CO2 removal in this hybrid IGCC scheme is technically feasible. Incorporation of shift reaction and membrane separators results in an energy penalty of 8–14% units, depending on pressure and staging, and in increased capital cost, especially for the ceramic membranes. However, this technology would permit reduction of CO2 emissions exceeding 50%, compared to conventional IGCC.  相似文献   

5.
Coal mixed with different types of wastes was co-gasified in a pilot-scale installation. The syngas produced was hot treated in two catalytic fixed-bed reactors. In the first one, dolomite was used and in the second reactor, a nickel-based catalyst was employed. Two different grade coals were tested, Puertollano and Colombian. Puertollano coal had high ash and sulphur contents, 42.5% and 2.4%, respectively, while ash and sulphur contents of Colombian coal were, respectively, 12.7% and 0.9%. Pine, bagasse, RDF and PE were the wastes mixed with both coals. After dolomite fixed-bed reactor, H2S and NH3 contents in syngas were much lower than those of the gas leaving the gasifier. For most coal and waste blends, NH3 reductions changed between 30% and 50% depending on feedstock nitrogen content, while H2S reductions achieved values from 68% to 74%, also depending on H2S concentration in syngas. After syngas had gone through the nickel-based catalyst, it presented H2S and NH3 contents that allowed its use in boilers and gas engines for most coal and waste blends. The overall syngas treatment led to H2S and NH3 reductions higher than 97%. For most experiments, final H2S and NH3 concentration in syngas were below 20 ppmv and 30 ppmv, respectively.  相似文献   

6.
A dynamic model of the Shell gasifier in an integrated coal gasification combined cycle (IGCC) is established based on physical principles, focusing on the time-dependent accumulation and flow on the walls. Numerical simulations are carried out to explore the system dynamic performance with respect to step changes in the inlet oxygen-to-coal ratio and steam-to-coal. The dynamic responses of key outlet variables, including the gas temperature, exiting slag mass flow rate, thicknesses of the solid and fluid slag layer, volume percentages of H2, CO2 and CO in syngas etc., are obtained. Three different coals are analyzed in this paper, and similar trends in their dynamic behaviors are found by using the gasifier model. The model and simulation method may be useful for providing insights to the operation and control of the IGCC process with respect to complex varying working conditions.  相似文献   

7.
Seven mixtures of coals, plastics and wood have been pelletized and fed into a pre-pilot scale fluidized bed gasifier in order to investigate the main aspects of the co-gasification of these materials. The main components of the obtained syngas (CO, H2, CO2, N2, CH4, CnHm) were measured by means of on-line analyzers and a gas cromatograph. The performance of the gasifier was evaluated on the basis of syngas composition, carbon conversion efficiency, energy content of syngas, cold gas efficiency and yield of undesired by-products (tar and soot-like particulate). The results of a first series of experimental tests showed the effect of gas fluidizing velocity and that of equivalence ratio on the main performance parameters for a specific coal-plastics mixture. A second series of tests has been carried out by changing the mixture composition keeping fixed the gas velocity and equivalence ratio. The presence of wood and coal in the mixture with plastics contributed to reduce the tar production even though it is accompanied by a lower syngas specific energy.  相似文献   

8.
Hydrogen was recovered and purified from coal gasification-produced syngas using two kinds of hybrid processes: a pressure swing adsorption (PSA)-membrane system (a PSA unit followed by a membrane separation unit) and a membrane-PSA system (a membrane separation unit followed by a PSA unit). The PSA operational parameters were adjusted to control the product purity and the membrane operational parameters were adjusted to control the hydrogen recovery so that both a pure hydrogen product (>99.9%) and a high recovery (>90%) were obtained simultaneously. The hybrid hydrogen purification processes were simulated using HYSYS and the processes were evaluated in terms of hydrogen product purity and hydrogen recovery. For comparison, a PSA process and a membrane separation process were also used individually for hydrogen purification. Neither process alone produced high purity hydrogen with a high recovery. The PSA-membrane hybrid process produced hydrogen that was 99.98% pure with a recovery of 91.71%, whereas the membrane-PSA hybrid process produced hydrogen that was 99.99% pure with a recovery of 91.71%. The PSA-membrane hybrid process achieved higher total H2 recoveries than the membrane-PSA hybrid process under the same H2 recovery of membrane separation unit. Meanwhile, the membrane-PSA hybrid process achieved a higher total H2 recovery (97.06%) than PSA-membrane hybrid process (94.35%) at the same H2 concentration of PSA feed gas (62.57%).
  相似文献   

9.
This paper assesses, from a thermodynamic perspective, the conversion of coal to power and hydrogen through gasification simultaneously with a dual chemical looping processes, namely chemical looping air separation (CLAS) and water–gas shift with calcium looping CO2 absorption (WGS-CaL). CLAS offers an advantage over other mature technologies in that it can significantly reduce its capital cost. WGS-CaL is an efficient method for hydrogen production and CO2 capture. The three major factors, oxygen to coal (O/C), steam to coal (S/C) and CaO to coal (Ca/C) were analyzed. Moreover, the comparisons of this suggested process and the traditional processes including integrated gasification combined cycle (IGCC), integrated gasification combined cycle with carbon capture and storage (IGCC-CCS) and integrated gasification combined cycle with calcium-based chemical looping (IGCC-CaL) were discussed. And, the exergy destruction analysis of this suggested process has also been calculated.  相似文献   

10.
The techno-economic evaluation of four novel integrated gasification combined cycle (IGCC) power plants fuelled with low rank lignite coal with CO2 capture facility has been investigated using ECLIPSE process simulator. The performance of the proposed plants was compared with two conventional IGCC plants with and without CO2 capture. The proposed plants include an advanced CO2 capturing process based on the Absorption Enhanced Reforming (AER) reaction and the regeneration of sorbent materials avoiding the need for sulphur removal component, shift reactor and/or a high temperature gas cleaning process. The results show that the proposed CO2 capture plants efficiencies were 18.5–21% higher than the conventional IGCC CO2 capture plant. For the proposed plants, the CO2 capture efficiencies were found to be within 95.8–97%. The CO2 capture efficiency for the conventional IGCC plant was 87.7%. The specific investment costs for the proposed plants were between 1207 and 1479 €/kWe and 1620 €/kWe and 1134 €/kWe for the conventional plants with and without CO2 capture respectively. Overall the proposed IGCC plants are cleaner, more efficient and produce electricity at cheaper price than the conventional IGCC process.  相似文献   

11.
Chemical-looping combustion (CLC) has emerged as a promising option for CO2 capture because this gas is inherently separated from the other flue gas components and thus no energy is expended for the separation. This technology would have some advantages if it could be adapted for its use with coal as fuel. In this sense, a process integrated by coal gasification and CLC could be used in power plants with low energy penalty for CO2 capture. This work presents the results obtained in the combustion of syngas as fuel with a Ni-based oxygen carrier prepared by impregnation in a CLC plant under continuous operation. The effect on the oxygen carrier behaviour and the combustion efficiency of several operating conditions was determined in the continuous CLC plant. High combustion efficiencies (~99%), close to the values limited by thermodynamics, were reached at oxygen carrier-to-fuel ratios higher than 5. The temperature in the FR had a significant influence, although high efficiencies were obtained even at 1073 K. The syngas composition had small effect on the combustion, obtaining high and similar efficiencies with syngas fuels of different composition, even in the presence of high CO concentrations. The low reactivity of the oxygen carrier with CO seemed to indicate that the water gas shift reaction acts as an intermediate step in the global reaction of the syngas in a continuous CLC plant. Neither agglomeration nor carbon deposition problems were detected during 50 h of continuous operation in the prototype. The obtained results showed that the impregnated Ni-based oxygen carrier could be used in a CLC plant for the combustion of syngas produced in an integrated gasification combined cycle (IGCC).  相似文献   

12.
Catalytic membrane reactors based on oxygen-permeable membranes are recently studied for hydrogen separation because their hydrogen separation rates and separation factors are comparable to those of Pd-based membranes. New membrane materials with high performance and good tolerance to CO2 and H2S impurities are highly desired. In this work, a new membrane material Ce0.85Sm0.15O1.925–Sr2Fe1.5Mo0.5O6-δ (SDC–SFM) was prepared for hydrogen separation. It exhibits high conductivities at low oxygen partial pressures, which is benefit to electron transfer and ion diffusion. A high hydrogen separation rate of 6.6 mL cm−2 min−1 was obtained on a 0.5-mm-thick membrane coated with Ni/SDC catalyst at 900°C. The membrane reactor was operated steadily for 532 h under atmospheres containing CO2 and H2S impurities. Various characterizations reveal that SDC–SFM has good stability in the membrane reactor for hydrogen separation. All facts confirm that SDC–SFM is promising for hydrogen separation in practical applications. © 2018 American Institute of Chemical Engineers AIChE J, 65: 1088–1096, 2019  相似文献   

13.
A novel air cyclone gasifier of rice husk has been used to obtain experimental data for air staged gasification. Three positions and five ratios of secondary air were selected to study effect of the secondary air on the temperature profile in the gasifier and quality of syngas. Temperature profile and the syngas component are found to be strongly influenced by the injection position and ratio of the secondary air. Generally, gas temperature in all conditions increased at the early stage of reaction, and then decreased in the reduction zone where reactions were endothermic. The peak temperature in the gasifier changed with the injection positions and ratios of the secondary air, which could be as high as 1056 °C. The concentration of CO2, CO, H2 and CH4 increased with the secondary air while the O2 concentration remained constant. The syngas component exhibited different laws when the secondary air ratio was changed. It was also shown that the optimum condition was that the secondary air was injected in the oxidization zone at a secondary air ratio of about 31%. Under that condition, the fuel gas production was 1.30 Nm3/kg, the low heating value of the syngas was 6.7 MJ/Nm3, the carbon conversion rate was 92.2% and the cold gas efficiency of the gasifier was 63.2%. The tar content of the syngas was also studied in this paper. It decreased from 4.4 g/m3 for gasification without the secondary air to 1.6 g/m3 for gasification with the secondary air injected in the oxidization zone.  相似文献   

14.
《分离科学与技术》2012,47(1-4):775-792
Abstract

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated to effectively remove hydrogen sulfide with various metal oxide sorbents at high temperatures and pressures. Metal oxide sorbents such as zinc titanate oxide, zinc ferrite oxide, copper oxide, manganese oxide, and calcium oxide were found to be promising sorbents in comparison with other removal methods such as membrane separation and reactive membrane separation. The removal reaction of H2S from coal gas mixtures with zinc titanate oxide sorbents was conducted in a batch reactor. The main objectives of this research are to formulate promising metal oxide sorbents for removal of hydrogen sulfide from coal gas mixtures, to compare reactivity of a formulated sorbent with a sorbent supplied by the Research Triangle Institute at high temperatures and pressures, and to determine effects of concentrations of moisture contained in coal gas mixtures, and to determine effects of concentrations of moisture contained in coal gas mixtures on equilibrium absorption of H2S into metal oxide sorbents. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures.  相似文献   

15.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. For its use with coal as fuel in power plants, a process integrated by coal gasification and CLC would have important advantages for CO2 capture. This paper presents the combustion results obtained with a Cu-based oxygen carrier in a continuous operation CLC plant (500 Wth) using syngas as fuel. For comparison purposes pure H2 and CO were also used. Tests were performed at two temperatures (1073 and 1153 K), different solid circulation rates and power inputs. Full syngas combustion was reached at 1073 K working at f higher than 1.5. The syngas composition had small effect on the combustion efficiency. This result seems to indicate that the water gas shift reaction acts as an intermediate step in the global combustion reaction of the syngas. The results obtained after 40 h of operation showed that the copper-based oxygen carrier prepared by impregnation could be used in a CLC plant for syngas combustion without operational problems such as carbon deposition, attrition, or agglomeration.  相似文献   

16.
The effects of operating factors on a gasification system were reviewed by comparing a computational simulation and real operation results. Notable operation conditions include a conveying gas/coal ratio of 0.44, an oxygen/coal ratio of 0.715, a reaction temperature of 1,000 °C, and reaction pressure of 5bar in the case of Adaro coal; based on this, the cold gas efficiency was estimated as 82.19%. At the point of the reaction temperature effect, because the cold gas efficiencies are more than 80% when the reaction temperatures are higher than 900 °C, the gasifier inner temperature must remain over 900 °C. At high reaction temperature such as 1,400 °C, the reaction pressure shows little effect on the cold gas efficiency. The addition of steam into the gasifier causes an endothermic reaction, and then lowers the gasifier outlet temperature. This is regarded as a positive effect that can reduce the capacity of the syngas cooler located immediately after the gasifier. The most significant factor influencing the cold gas efficiency and the gasifier outlet temperature is the O2/coal ratio. As the O2/coal ratio is lower, the cold gas efficiency is improved, as long as the gasifier inner temperature remains over 1,000 °C. With respect to the calorific value (based on the lower heating value, LHV) of produced gas per unit volume, as the N2/coal ratio is increased, the calorific value per syngas unit volume is lowered. Decreasing the amount of nitrogen for transporting coal is thus a useful route to obtain higher calorific syngas. This phenomenon was also confirmed by the operation results.  相似文献   

17.
For the foreseeable future, coal and petroleum‐based materials, such as petroleum Coke, residuals, and high‐sulphur fuel oil, are being adopted as the feedstocks of choice for gasification projects. Of particular interest from a Canadian perspective is Coke generated from the thermal cracking of the oil sands in Western Canada. Oil sand Coke contains high sulphur (5–6%), and also typically has a low volatile content, and lower reactivity than most coals. Experimental runs have recently been conducted on the pilot‐scale entrained‐flow gasifier at CETC‐Ottawa, blending oil sand Coke with sub‐bituminous and lignite coals, to try and enhance the gasification potential of these materials. Blending Genesee sub‐bituminous coal with the delayed oil sands Coke was found to alleviate problems encountered with slag plugging the reactor when running with Genesee coal alone. Blends of Genesee sub‐bituminous and Boundary Dam lignite coals with Coke achieved higher carbon conversions and cold gas efficiencies than runs completed with the Coke by itself. While using CO2 as the conveying gas into the gasifier was not found to significantly affect the conversion obtained, steam addition was found to have a marked effect on CO and H2 concentrations in the syngas.  相似文献   

18.
Steam methane reforming (SMR) is a commercial process to produce syngas. Normally, the as-produced syngas is characterized by a H2/CO ratio of 3. However, such H2/CO ratio is unsuitable for Fischer–Tropsch synthesis. The hydrogen obtained by subsequent upgrading of syngas usually contains residual CO, which readily deactivates Pt electrocatalysts in fuel cells. Here we report an innovative route by coupling SMR with H2 removal in a proton conducting membrane reactor to coproduce syngas with a preferable H2/CO ratio of 2 and CO-free H2 on opposite sides of the membrane, which can be directly used for Fischer–Tropsch synthesis and fuel cells, respectively. Notably, H2 is in-situ extracted by the membrane that only allows the permeation of H2 as protons through the oxide lattice with infinite selectivity, and thus the obtained H2 is CO-free. This work could provide an alternative option in one-step conversion of methane into two inherently separated valuable chemicals.  相似文献   

19.
Unmixed steam reforming is an alternative method of catalytic steam reforming that uses separate air and fuel–steam feeds, producing a reformate high in H2 content using a single reactor and a variety of fuels. It claims insensitivity to carbon formation and can operate autothermally. The high H2 content is achieved by in situ N2 separation from the air using an oxygen transfer material (OTM), and by CO2 capture using a solid sorbent. The OTM and CO2 sorbent are regenerated during the fuel–steam feed and the air feed, respectively, within the same reactor. This paper describes the steps taken to choose a suitable CO2-sorbent material for this process when using methane fuel with the help of microreactor tests, and the study of the carbonation efficiency and regeneration ability of the materials tested. Elemental balances from bench scale experiments using the best OTM in the absence of the CO2 sorbent allow identifying the sequence of the chemical reaction mechanism. The effect of reactor temperature between 600 and on the process outputs is investigated. Temperatures of 600 and under the fuel–steam feed were each found to offer a different set of desirable outputs. Two stages during the fuel–steam feed were characterised by a different set of global reactions, an initial stage where the OTM is reduced directly by methane, and indirectly by hydrogen produced by methane thermal decomposition, in the second stage, steam reforming takes over once sufficient OTM has been reduced. The implications of these stages on the process desirable outputs such as efficiency of reactants conversion, reformate gas quality, and transient effects are discussed.  相似文献   

20.
Fischer-Tropsch technology has become a topical issue in the energy industry in recent times. The synthesis of linear hydrocarbon that has high cetane number diesel fuel through the Fischer-Tropsch reaction requires syngas with high H2/CO ratio. Nevertheless, the production of syngas from biomass and coal, which have low H2/CO ratios or are CO2 rich may be desirable for environmental and socio-political reasons. Efficient carbon utilization in such H2-deficient and CO2-rich syngas feeds has not been given the required attention. It is desirable to improve carbon utilization using such syngas feeds in the Fischer-Tropsch synthesis not only for process economy but also for sustainable development. Previous catalyst and process development efforts were directed toward maximising C5+ selectivity; they are not for achieving high carbon utilization with H2-deficient and CO2-rich syngas feeds. However, current trends in FTS catalyst design hold the potential of achieving high carbon utilization with wide option of selectivities. Highlights of the current trends in FTS catalyst design are presented and their prospect for achieving high carbon utilization in FTS using H2-deficient and CO2-rich syngas feeds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号