首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Mechanical strength and biocompatibility are issues of most concern for scaffolds in cartilage tissue engineering. Collagen modification is always used to strengthen scaffolds. There are mainly two ways for collagen modification: inclusion of reinforcing phase to form composites and chemical cross-linking. To explore an alternative approach, the collagen hydrogel modified by a reinforcement phase was compared with cross-linking. Collagen-alginate hydrogel (CAH) and collagen hydrogel cross-linked by genipin (CGH), which were different in modification methods, were chosen candidates. A comprehensive study was carried out on mechanical, structural and biological properties including swelling ratio measurement, in vitro degradation, AFM, mechanical test, thermogravimetric analysis, and in vitro cartilage tissue engineering. The results showed that mechanical strength of collagen was more enhanced for CGH than CAH, as evidenced by analysis of swelling ratio, in vitro degradation, AFM, mechanical test and thermostability. MTT and histological results showed that CGH was superior to CAH with less cytotoxicity and more chondrocytes distributed as well as more aggrecan secreted. With the increase in culture time, the cytotoxicity of cross-linker may be alleviated. CGH may provide a more favorable biomimetic environment for cartilage growth. All these indicated that selecting a cross-linker with a minimal cytotoxicity could be more promising for collagen modification, with improvements observed in both physical and biological properties. For reinforcement, it was required that the incorporated component should be equipped with better or equivalent properties compared with collagen. This study provided important implications to engineering collagen-based hydrogels for cartilage graft applications.  相似文献   

2.
Collagen has high biocompatibility and biodegradability and therefore is an ideal natural polymer biomaterial for tissue regeneration, such as gel-like and porous collagens. However, the limitation of gel-like collagen is unsuitability for cell/tissue ingrowth and the limitation of porous collagen is quick degradation rate. Here, the authors propose a novel type of foamy collagen to address the previous limitations. Foamy collagen with a closed/nonconnective porous structure was formed using foaming technology and not using toxic crosslinking reagents. This research aimed to investigate the macro-/microstructure, the in vitro/vivo degradation rate, and the tissue regeneration feasibility of foamy collagen. For in vitro degradation rate, porous collagen was completely degraded by enzyme, whereas 91.5% and 72.1% of gel-like and foamy collagens, respectively, remained intact. In vivo degradation rate had a similar trend as in vitro data. After implantation of the collagens in Sprague Dawley rats, immune cells were observed at the periphery of the three types of collagen at day 3. Fibroblast ingrowth was observed in foamy and porous collagen groups at day 7. Neocapillary formation and tissue regeneration were observed in foamy and porous collagen groups at day 14, but nearly none in gel-like collagen group. In conclusion, the authors believe that foamy collagen is promising for application of soft-tissue regeneration.  相似文献   

3.
Articular cartilage has poor ability to heal once damaged. Tissue engineering with scaffolds of polymer hydrogels is promising for cartilage regeneration and repair. Polymer hydrogels composed of highly hydrated crosslinked networks mimic the collagen networks of the cartilage extracellular matrix and thus are employed as inserts at cartilage defects not only to temporarily relieve the pain but also to support chondrocyte proliferation and neocartilage regeneration. The biocompatibility, biofunctionality, mechanical properties, and degradation of the polymer hydrogels are the most important parameters for hydrogel‐based cartilage tissue engineering. Degradable biopolymers with natural origin have been widely used as biomaterials for tissue engineering because of their outstanding biocompatibility, low immunological response, low cytotoxicity, and excellent capability to promote cell adhesion, proliferation, and regeneration of new tissues. This review covers several important natural proteins (collagen, gelatin, fibroin, and fibrin) and polysaccharides (chitosan, hyaluronan, alginate and agarose) widely used as hydrogels for articular cartilage tissue engineering. The mechanical properties, structures, modification, and structure–performance relationship of these hydrogels are discussed since the chemical structures and physical properties dictate the in vivo performance and applications of polymer hydrogels for articular cartilage regeneration and repair. © 2012 Society of Chemical Industry  相似文献   

4.
5.
Chitosan–polylactide (CH–PLA) copolymers with various polylactide percentages changing from around 14 to 40 wt% were synthesized. CH–PLAs were then blended with type-II collagen to fabricate layered collagen/CH–PLA scaffolds that are potentially suitable for the applications in articular cartilage repair. Based on combinatorial processing techniques involving layer-superposition, thermal melting and freeze-drying, two types of stratified collagen/CH–PLA scaffolds were built. The content of collagen inside the scaffolds altered from the top layer to the bottom layer in a trend contrary to that of chitosan. One of them was fabricated using tripolyphosphate (TPP) as a single crosslinker and another type of scaffold was constructed via a dual-crosslinking pathway using TPP and genipin as two crosslinkers in a designated order. These collagen/CH–PLA scaffolds were found to have graded average pore-size and porosity, gradient swelling index and layer-dependent compressive modulus. The resulting scaffolds were thus partially similar to the articular cartilage extracellular matrix in composition, structure and property. In vitro cell culture on some optimized collagen/CH–PLA scaffolds for a period of time up to 3 weeks showed that the scaffolds were able to well support the growth of the seeded cells, suggesting that these collagen/CH–PLA scaffolds have promising potential for articular cartilage repair.  相似文献   

6.
The replacement of damaged or degenerated articular cartilage tissue remains a challenge, as this non-vascularized tissue has a very limited self-healing capacity. Therefore, tissue engineering (TE) of cartilage is a promising treatment option. Although significant progress has been made in recent years, there is still a lack of scaffolds that ensure the formation of functional cartilage tissue while meeting the mechanical requirements for chondrogenic TE. In this article, we report the application of flock technology, a common process in the modern textile industry, to produce flock scaffolds made of chitosan (a biodegradable and biocompatible biopolymer) for chondrogenic TE. By combining an alginate hydrogel with a chitosan flock scaffold (CFS+ALG), a fiber-reinforced hydrogel with anisotropic properties was developed to support chondrogenic differentiation of embedded human chondrocytes. Pure alginate hydrogels (ALG) and pure chitosan flock scaffolds (CFS) were studied as controls. Morphology of primary human chondrocytes analyzed by cLSM and SEM showed a round, chondrogenic phenotype in CFS+ALG and ALG after 21 days of differentiation, whereas chondrocytes on CFS formed spheroids. The compressive strength of CFS+ALG was higher than the compressive strength of ALG and CFS alone. Chondrocytes embedded in CFS+ALG showed gene expression of chondrogenic markers (COL II, COMP, ACAN), the highest collagen II/I ratio, and production of the typical extracellular matrix such as sGAG and collagen II. The combination of alginate hydrogel with chitosan flock scaffolds resulted in a scaffold with anisotropic structure, good mechanical properties, elasticity, and porosity that supported chondrogenic differentiation of inserted human chondrocytes and expression of chondrogenic markers and typical extracellular matrix.  相似文献   

7.
Polylactic acid (PLA) films were surface modified by gamma ray irradiation‐induced grafting of N‐vinyl pyrrolidone (NVP). The in vitro degradation behavior of polylactic acid grafting N‐vinyl pyrrolidone (PLA‐g‐PVP) copolymer was analyzed in terms of weight loss, molecular weight, and thermal properties. Grafting NVP significantly accelerated the degradation of PLA. The mass losses of the copolymers, which were less than that of pure PLA at the beginning of the degradation period, sharply accelerated with increasing degradation time. Moreover, the crystallization temperature decreased with increasing degradation time in the same graft ratio, and the degree of crystallinity increased. Cytotoxicity experiments and animal experiments in vivo were carried out to evaluate the biocompatibility of PLA‐g‐PVP copolymer. Varying graft ratios of PVP could control the degradation rate of copolymers, and thus broadening the applications of this material, such as in tissue engineering scaffolds, drug delivery, and prevention of postsurgical adhesion. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Developing minimal invasive strategies via injectable hydrogels for effective repairing of cartilage defects is highly desired. Injectable hydrogels, which can simultaneously embed cell and growth factors (GFs), serve as in situ formed scaffolds and could support an accelerated tissue regeneration process. The purpose of this study is to fabricate a composite injectable hydrogel, based on alginate (Alg)/polyvinyl alcohol (PVA) incorporating platelet rich plasma (PRP)-encapsulated Alg sulfate (AlgS) microbeads, as a localized sustained release system of GFs, for the articular cartilage regeneration. The results show that synthesized AlgS microbeads support the sustained release of PRP GFs during 14 days, where preserve the bioactivity of them more than the free PRP. Rabbit adipose-derived mesenchymal stem cells in contact with PRP-loaded AlgS beads show more proliferation (2.7 folds) and have obviously higher deposition of collagen type ΙΙ and GAGs than free PRP treated ones. In addition, cells encapsulated into the hydrogel including PRP sustained release system show upregulated expression of collagen type ΙΙ (61 folds), Aggrecan (294 folds) and SOX9 (71.5 folds), as cartilage-critical genes, compared to the direct treatment by PRP. To summarize, the developed hybrid Alg/PVA hydrogel embedding with PRP-encapsulated AlgS microbeads is suggested as a potential in situ formed scaffold for cartilage regeneration.  相似文献   

9.
Tissue engineering is a new approach for regeneration of damaged tissues. The current clinical methods such as autograft and allograft transplantation are not effective for repairing bone damages, mainly due to the limited available sources and the donor-site side effects. In this research, the nanocomposite poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/nano hydroxyapatite (nHA) scaffolds with different nHA ratios for bone regeneration were utilized. The diameter and porosity of scaffolds were approximately 200?nm and 74%, respectively. The degradability test of the scaffolds suggests a low degradation rate with total degradation of 30% after 3 months. Cytotoxicity result showed that cultured osteoblast cells (MC3T3) on nanocomposite scaffolds had superiority in terms of higher proliferation and attachment in comparison with PHBV scaffold. The protein expression of alkaline phosphatase illustrated that nanofibrous scaffold containing hydroxyapatite had the highest alkaline phosphatase activities as a result of better proliferation. These results recommend that PHBV/nHA scaffolds are suitable candidates for bone tissue engineering.  相似文献   

10.
The production of porous tubular scaffolds is of great interest in the field of tissue engineering, given the existence of several tubular structures in the human body. In this work, a methodology was developed for the fabrication of tubular-shaped scaffolds based on the casting of polymeric solutions by controlled crosslinking mediated by a semipermeable cast. The fabrication of hydrogel tubular scaffolds from chitosan–pectin polymeric mixtures (tCh-P, 3% w/v) was performed to attest the feasibility of the technique. Tubular structures with about 4.15 mm internal diameter and 1.55 mm wall thickness were produced. The structures are highly porous, presenting interconnected pores with average diameter of about 360 μm. Seeding of human smooth muscle cells on the material was successfully achieved by using collagen gel to facilitate cell migration and retention inside the structure of the scaffold. The methodology herein proposed was successfully validated for the production of tubular constructs, opening new perspectives for the fabrication of matrices based on polymers that are passive of crosslinking with small molecules. Besides being an interesting approach to produce tubular scaffolds, this methodology can be considered an useful platform to obtain materials for drug screening and diagnostic studies. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48510.  相似文献   

11.
This paper reports the effect of the combined technique of dehydrothermal treatment (DHT) and a mixture of 1‐ethyl‐3(3‐dimethylaminopropyl) carbodiimide (EDC) and N‐hydroxysuccinimide (NHS) crosslinking on the physicochemical properties of collagen/hydroxyapatite materials. Collagen and collagen/hydroxyapatite porous scaffolds containing different amounts of collagen and hydroxyapatite were prepared with use of the freeze‐drying technique. All samples were capable of absorbing a large quantity of phosphate buffered saline. Samples crosslinked by DHT+EDC/NHS presented higher resistance to collagenase degradation (with slightly reduced degradation in DHT+EDC/NHS crosslinked scaffolds prepared from 2% collagen solution), whereas DHT scaffolds exhibited faster degradation. Mechanical testing results suggested that scaffolds crosslinked by DHT+EDC/NHS treatment have an improved compressive modulus compared with EDC/NHS crosslinking. The qualitative analysis of colour intensity resulting from the CellTiter 96 Aqueous One Solution Cell Proliferation Assay (MTS) led to the conclusion that all samples, regardless of the crosslinking method, were well tolerated by cells. However, DHT and EDC/NHS crosslinked scaffolds seem to support better cell viability, in contrast to DHT+EDC/NHS crosslinked scaffolds that support cell differentiation instead. DHT+EDC/NHS crosslinked scaffolds markedly increase the specific alkaline phosphatase activity of cells, which may be of benefit in bone tissue engineering. © 2017 Society of Chemical Industry  相似文献   

12.
To modify the degradability and improve the hydrophilicity of polylactic acid (PLA), collagen‐modified polylactide (CPLA) was synthesized by means of grafting modification method including chloridization and aminolysis, and its structure was characterized by FTIR, 1H NMR, and fluorescein isothiocyanate‐labeled fluorescence spectra. Subsequently, the hydrophilicity and degradation behavior of CPLA were characterized. Finally, CPLA was used as a carrier for the preparation of the trypsin sustained release microspheres via the emulsion‐solvent evaporation technique, followed with its characterization. Results showed that the collagen had been grafted into PLA and the graft ratio of collagen measured about 6.7%. Water absorption behavior test indicated that the hydrophilicity of CPLA was significantly higher than PLA. Furthermore, degradability test revealed that the degradation behavior of PLA was obviously modified and there was no obvious acid‐catalyzed self‐accelerating degradation behavior in the degradation process of CPLA. It was also indicated that the encapsulation efficiency and drug content in trypsin‐loaded CPLA microspheres were all clearly higher than trypsin‐loaded PLA microspheres. The results suggested that CPLA showed a great potential as matrix for drug delivery. POLYM. COMPOS., 36:88–93, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
Fibrous proteins such as collagens are important raw materials for the production of new bio-based or biomimetic materials. A rich source of collagen is found in the extracellular skeletal matrix of marine or sea sponges, an anatomically simple animal species. This abundant source of collagens was explored for its potential to create a hydrogel suitable as a biomaterial for drug delivery and tissue engineering. Collagen proteins were extracted from the skeletons of hard and soft species of sponges from the Spongia genus. The protein profile, amino acid composition, and partial sequences of the extracted proteins were determined, and the protein extracts were fabricated with chitosan and organic cross-linkers to create hydrogel films. The amino acid compositions and sequences of Spongia collagens are similar to collagens obtained from other species. Spongia collagens are hydrophilic and mechanically fragile. Blending these with chitosan and the organic crosslinkers, genipin and glyceraldehyde, formed blended films with improved mechanical performance and structural integrity and improved stress–strain and water swelling characteristics. These material properties show the potential of the films to be used as hydrogel biomaterials in medical applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47996.  相似文献   

14.
The purpose of this study was to improve the biocompatibility of glutaraldehyde (GA) cross‐linked chitosan coated collagen scaffold for cartilage tissue regeneration. In order to prevent the potential toxicity of GA, we treated the designed scaffold with either glutamic acid or glycine. Amino acid treated scaffolds were characterized by scanning electron microscopy (SEM) techniques. Afterward, chondrocyte interaction with the composite scaffold was investigated assessing cell adhesion and proliferation using Hoechst staining and MTT cell proliferation assay, respectively. The SEM analyses of the scaffolds’ surface and cross‐section confirmed the adhesion of amino acids on the surface of the scaffolds. We also observed that scaffolds’ porosity was reduced due to the coverage of the pores by chitosan and amino acids, leading to low porosity. The use of amino acid improved the chondrocyte adhesion and proliferation inside the scaffolds’ pores when cells were cultured onto the chitosan‐coated collagen scaffolds. Overall, our in vitro results suggest the use of amino acid to improve the biocompatibility of natural polymer composite scaffold being crosslinked with glutaraldehyde. Such scaffold has improved mechanical properties; biocompatibility thus may be useful for tissue regeneration such as cartilage.
  相似文献   

15.
This study focuses on the development of an efficient delivery modes designed for chondroitin sulfate (CS) for application in cartilage tissue engineering. Novel three-dimensional (3-D) scaffold fabricated from natural polymers such as chitosan and gelatin blended with chondroitin sulfate (CGC) were synthesized using cryogelation technology. Other methods to deliver CS were also tried, which included incorporation into microparticles for sustained release and embedding the CS loaded microparticles in CG (chitosan-gelatin) cryogel scaffold. Novel CGC scaffolds were characterized by rheology, scanning electron microscopy (SEM), and mechanical assay. Scaffolds exhibited compression modulus of 50 KPa confirming the utility of these scaffolds for cartilage tissue engineering. Primary goat chondrocytes were used for the in vitro testing of all the delivery modes. So this study shows that CS microparticles when given freely with matrix (chitosan–gelatin) or embedded into scaffold has potential to enhance chondrocyte proliferation together with improved matrix production than in control without microspheres.  相似文献   

16.
This study describes the preparation of electrospun poly(caprolactone) (PCL) and poly(lactic acid) (PLA) fibrous scaffolds with and without nano-hydroxyapatite (nHAp) having nanoscale, microscale and combined micro/nano (multiscale) architecture. Processing parameters such as polymer concentration, voltage, flow rate and solvent compositions were varied in wide range to display the effect of each one in determining the diameter and morphology of fibers. The effect of each regulating parameter on fiber morphology and diameter was evaluated and characterized using scanning electron microscope (SEM). Degradability of the selected fibrous scaffolds was verified by phosphate buffered saline immersion and its morphology was analyzed through SEM, after 5 and 12 months. Quantitative measurement in degradation was further evaluated through pH analysis of the medium. Both studies revealed that PLA had faster degradation compared to PCL irrespective of the size scale nature of fibers. Structural stability evaluation of the degraded fibers in comparison with pristine fibers by thermogravimetric analysis further confirmed faster degradability of PLA compared to PCL fibers. The results indicate that PLA showed faster degradation than PCL irrespective of the size-scale nature of fibrous scaffolds, and therefore, could be applied in a variety of biomedical applications including tissue engineering.  相似文献   

17.
Tissue and organ failure has induced immense economic and healthcare concerns across the world. Tissue engineering is an interdisciplinary biomedical approach which aims to address the issues intrinsic to organ donation by providing an alternative strategy to tissue and organ transplantation. This review is specifically focused on cartilage tissue. Cartilage defects cannot readily regenerate, and thus research into tissue engineering approaches is relevant as a potential treatment option. Cells, scaffolds, and growth factors are three components that can be utilized to regenerate new tissue, and in particular recent advances in microparticle technology have excellent potential to revolutionize cartilage tissue regeneration. First, microspheres can be used for drug delivery by injecting them into the cartilage tissue or joint space to reduce pain and stimulate regeneration. They can also be used as controlled release systems within tissue engineering constructs. Additionally, microcarriers can act as a surface for stem cells or chondrocytes to adhere to and expand, generating large amounts of cells, which are necessary for clinically relevant cell therapies. Finally, a newer application of microparticles is to form them together into granular hydrogels to act as scaffolds for tissue engineering or to use in bioprinting. Tissue engineering has the potential to revolutionize the space of cartilage regeneration, but additional research is needed to allow for clinical translation. Microparticles are a key enabling technology in this regard.  相似文献   

18.
Adipose-derived mesenchymal stromal cells (Ad-MSCs) are a promising tool for articular cartilage repair and regeneration. However, the terminal hypertrophic differentiation of Ad-MSC-derived cartilage is a critical barrier during hyaline cartilage regeneration. In this study, we investigated the role of matrilin-3 in preventing Ad-MSC-derived chondrocyte hypertrophy in vitro and in an osteoarthritis (OA) destabilization of the medial meniscus (DMM) model. Methacrylated hyaluron (MAHA) (1%) was used to encapsulate and make scaffolds containing Ad-MSCs and matrilin-3. Subsequently, the encapsulated cells in the scaffolds were differentiated in chondrogenic medium (TGF-β, 1–14 days) and thyroid hormone hypertrophic medium (T3, 15–28 days). The presence of matrilin-3 with Ad-MSCs in the MAHA scaffold significantly increased the chondrogenic marker and decreased the hypertrophy marker mRNA and protein expression. Furthermore, matrilin-3 significantly modified the expression of TGF-β2, BMP-2, and BMP-4. Next, we prepared the OA model and transplanted Ad-MSCs primed with matrilin-3, either as a single-cell suspension or in spheroid form. Safranin-O staining and the OA score suggested that the regenerated cartilage morphology in the matrilin-3-primed Ad-MSC spheroids was similar to the positive control. Furthermore, matrilin-3-primed Ad-MSC spheroids prevented subchondral bone sclerosis in the mouse model. Here, we show that matrilin-3 plays a major role in modulating Ad-MSCs’ therapeutic effect on cartilage regeneration and hypertrophy suppression.  相似文献   

19.
In order to improve the degradability of polylactic acid (PLA) composites and screen PLA degradation microorganisms. Sodium alginate was added into the wheat straw/PLA composites, and both composites (with/without sodium alginate) were buried in natural soil for 100 consecutive days subsequently. Weight loss and characterization of the PLA composites, carbon and nitrogen content in soil and microbial community composition were detected after degradation, with the result that the degradability of the PLA composites was greatly improved after the addition of sodium alginate. The weight loss of PLA composites with sodium alginate was 8.5%, which was 1.81 times that of PLA composites without sodium alginate. Sodium alginate and/or wheat straw in the PLA composites took the lead in the beginning course of the degradation. The added sodium alginate serves the purpose of making it easier to degrade the crystallization zone of the PLA composites. Bionectriaceae in the soil shoots up in the number after degradation, signifying its potential to be part of the microorganism family serving to degrade PLA composites. The results would help reveal the degradation mechanism of PLA composites and provide support for the screening of PLA composites degradation microorganisms.  相似文献   

20.
This work focuses mainly about swelling and rheological properties of calcium phosphate filled bacterial cellulose (BC)-based hydrogel scaffolds. Calcium phosphate is incorporated in the form of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) in different ratios, that is, 00:00, 10:90, 20:80, 40:60, 50:50, and 60:40. These scaffolds are also comprised with polyvinylpyrrolidone (PVP), poly(ethylene glycol), agar, and glycerin; designated as “BC-PVP” and “BC-PVP-β-TCP/HA.” All the hydrogel scaffolds are showing the notable viscoelastic property at 28 and 37 °C temperatures. The degree of swelling is found significant in BC-PVP-β-TCP/HA_50:50 scaffold and it is notably elastic at 37 °C after 5 min of swelling. However, after 60 min of swelling and at equilibrium swelling state, the elastic property of BC-PVP-β-TCP/HA_20:80 is revealed the highest. Considering the degree of swelling and rheological properties, the BC-PVP-β-TCP/HA_50:50 and BC-PVP-β-TCP/HA_20:80 hydrogel scaffolds found suitable for their application in bone tissue engineering or bone tissue regeneration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48522.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号