首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Ceramics International》2020,46(6):7475-7481
This paper is devoted to a comparative study on the isothermal oxidation of thick thermal barrier coating (TTBC) with and without segmented cracks produced by atmospheric plasma spray (APS) process. Accordingly, the growth of thermally grown oxide (TGO) and its effect on the degradation of the coating were investigated. Thick top coat in both segmented crack and conventional thick TBC reduced the double layered TGO growth rate slightly. The segmented crack thick TBC demonstrated longer isothermal oxidation life in comparison with that of the conventional thick TBC at 1100 °C. The dominant failure mechanism was spallation due to lateral cracking within the TGO and/or within TBC near the TGO layer, called mixed failure. Stress, and consequently strain, induced on the TTBC due to progressive TGO growth, seems to be primarily responsible for the crack initiation and propagation leading to the coating failure. Increment of elastic energy stored within the top coat due to the increasing of TGO thickness, finally causes thick thermal barrier coating failure in high temperature isothermal oxidation.  相似文献   

2.
《Ceramics International》2023,49(3):4795-4806
Thick thermal barrier coatings (TTBCs) have been developed to increase the lifetime of hot section parts in gas turbines by increasing the thermal insulating function. The premeditated forming of segmentation cracks was found to be a valuable way for such an aim without adding a new layer. The TTBC introduced in the current study are coatings with nominal thickness ranging from 1 to 1.1 consisting of MCrAlY bond coat and 8YSZ top coat deposited by air plasma spray technique (APS). TTBCs with segmented crack densities of 0.65 mm?1 (type-A) and 1 mm?1 (type-B) were deposited on a superalloy substrate by adjusting the coating conditions. It was found that the substrate temperature has an influential role in creating the segmentation crack density. The crack density was found to increase with substrate temperature and liquid splat temperature. The two types of coatings (type-A and B) with different densities of segmentation crack were heat-treated at 1000 °C (up to 100 h) and 1100 °C (up to 500 h). The variation of hardness measured by indentation testing indicates a similar trend in both types of coatings after heat treatments at 1000 °C and 1100 °C. Weibull analysis of results demonstrates that higher preheating coating during the deposition results in a denser YSZ coating. The growth rate of TGO for TTBCs was evaluated for cyclic and isothermal oxidation routes at 1000 °C and 1100 °C. The TGO shows the parabolic trend for both two types of coatings. The Kps value for two oxidation types is between 5.84 × 10?17 m2/s and 6.81 × 10?17 m2/s. Besides, the type B coating endures a lifetime of more than 40 cycles at thermal cycling at 1000 °C.  相似文献   

3.
The effect of heat treatment, growth of the TGO layer, oxidation of bond coat, and the impact of the presence of two bond coats on the TBC's thermal shock resistance has been investigated experimentally. TGO oxide layers were created with two-time heat treatment of 12 and 24 h at 1000. Then the thermal shock test was performed on the APS/APS and HVOF/APS/APS samples. The results show that the use of two BCs and the presence of a thin TGO layer has a good effect on TBC performance. The presence of two BC layers increased the shock resistance by an average of 37.2%. 12 h heat treatment caused a 14.0% and 17.4% shock resistance increase in samples with the HVOF/APS/APS layer and APS/APS layer, respectively. 24 h heat treatment decreased the samples' performance by 6.7% and 10.2% for samples with two BC and one BC, respectively.  相似文献   

4.
Thermal barrier coating (TBC) system consisting of yttria stabilized zirconia (YSZ) top coat, glass–ceramic bond coat and nickel base superalloy substrate was subjected to static oxidation test at 1200 °C for 500 h in air. Oxidation resistance of this TBC system was compared with the conventional TBC system under identical heat treatment condition. Both the TBC systems were characterized by SEM as well as EDX analysis. No TGO layer was found between the bond coat and the top coat in the case of glass–ceramic bonded TBC system while the conventional TBC system exhibited a TGO layer of about 16 μm thickness at the bond coat-top coat interface region.  相似文献   

5.
Local residual stress in thermally grown oxide (TGO) layers is the primary cause of failure of thermal barrier coating (TBC) systems, especially TBCs prepared by air plasma spray (APS) with a highly irregular TGO. Herein, the distribution of residual stress and the evolution of the irregular TGO layer in APS TBCs were investigated as a function of oxidation time. The stress was measured from cross-sectional micrographs and converted to the actual stress inside the coatings before sectioning. The TGO exhibited significant inhomogeneity at different locations. Stress conversion occurred across the TGO thickness; the layer near the yttria-stabilised zirconia (YSZ) component exhibited compressive stress, whereas that along the bond coat was under tensile stress. The evolution of the compressive stress is also discussed. These analyses may provide a better understanding of the mechanism of APS TBCs.  相似文献   

6.
Novel ceramic topcoat of Gd2O3–Yb2O3–Y2O3 co-stabilized ZrO2 (GYbYSZ) thermal barrier coatings were fabricated via EB-PVD technique. The phase structural stability, phase constituent, chemical composition, morphology and cyclic oxidation of the thermal barrier coatings (TBCs) were systematically studied. Based on the XRD results, the GYbYSZ ceramics has not undergone phase transformation upon long-term annealing at 1373 K and 1523 K. Although the chemical content of the GYbYSZ ceramic coat deviates from the stoichiometric value, the coating is mostly composed of cubic phase, which is accord with the XRD pattern of the original ingot. A pyramidal-like morphology appears in the microtexture of the column tips and the measured diameters of the pyramids are about 2.5~4 μm. After thermal cycling, the surface of the coating presents a multi-layer structure, which is followed by layer-by-layer spallation. The failure zone of the ceramic coats is possible to occur the interior of the thermally grown oxide (TGO) layer, or within the top ceramic coat at the interface of bond coat/TGO layers. The degradation of GYbYSZ TBCs is primarily attributed to the accumulation and relaxation of residual stress, propagation of vertical through microcracks, the growth rumpling of TGO layer, the ridges of grain boundary and the abnormal oxidation of bond coat.  相似文献   

7.
The performance of an intermediate Cr3C2 ceramic layer applied by PVD between the bond coat and the ceramic top coat in a TBC system was evaluated. The thickness of the transitional layer was kept around 1–2 μm. Two substrate materials and two distinct bond coats were combined in the tests. High Velocity Oxygen Fuel (HVOF) and Atmospheric Plasma Spraying (APS) were used respectively for bond coat and top coat deposition. Isothermal oxidation tests were performed at 1000 °C in static air atmosphere. Thermal grown oxide (TGO) was measured and correlated to the exposition times. Results are discussed in terms of the TGO growth rate and changes in residual stresses. The results suggest an improvement in the oxidation resistance of the bond coat because of the presence of the intermediate layer.  相似文献   

8.
《Ceramics International》2017,43(12):8556-8563
Adhesion strength and thermal insulation of nanostructured Yttria Stabilized Zirconia (YSZ) thermal barrier coatings (TBC) were investigated and compared with those of conventional YSZ TBCs. A Nickel based superalloy (IN-738LC) was used as the substrate with NiCrAlY bond coat, and nanostructured and conventional YSZ top coats were applied by using air plasma spray (APS). The adhesion strength of coatings was evaluated according to ASTM C633-01, and their thermal insulation capability was evaluated using a specially designed test setup at an electrical furnace. The results revealed the nanostructured YSZ coating to have a bimodal microstructure consisting of nanosized particles and microcolumnar grains. The bimodal microstructure of nanostructured coatings prevented crack propagation by splat boundaries and unmelted particles, thereby improving the bonding strength. Also, due to the presence of nano-zones in the microstructure of nano TBCs, coatings exhibited superior thermal insulation capability.  相似文献   

9.
Q.M. Yu  Q. He 《Ceramics International》2018,44(3):3371-3380
Residual stress has a significant influence on the crack nucleation and propagation in thermal barrier coatings (TBC) system. In this work, the residual stress in the air plasma spraying (APS) TBC system during cooling process was numerically studied, and the influence of the material properties of each layer on the residual stress was investigated. The morphologies of the interface were described by a piecewise cosine function, and the amplitude for each segment gradually increases. The elasticity, plasticity and creep of top coat (TC), thermally grown oxide (TGO) layer and bond coat (BC) were considered and the elasticity and creep of the substrate layer were taken into account. The material properties of all layers vary with temperature. The results show that the material properties have complex influence on the residual stress during cooling. The effect of the material properties of TC and BC on the residual stress at the interface is relatively large, and that of TGO and substrate is relatively small. These results provide important insight into the failure mechanism of air plasma spraying thermal barrier coatings, and important guidance for the optimization of thermal barrier coating interfaces.  相似文献   

10.
After depositing a Ni–32Co–20Cr–8Al–0.5Y–1Si–0.03B (wt%) bond coat on a Ni-base superalloy using arc ion plating (AIP), a ceramic top coat with hollow spherical powder of ZrO2–8 wt%Y2O3 (HSP–YSZ) was deposited using detonation gun (D-gun) spraying. Thermal exposure behaviors of thermal barrier coatings (TBCs) were investigated at 1100°C. The thermal growth oxides (TGO) layer thickened and became more undulated during thermal exposure. Yttrium aluminum garnet (YAG) was observed within TGO, which produced thickness imperfections and thus aided to build up out-of-plane stresses. As a result, radial cracks initiated at the defects around TGO imperfections and separation developed through crack nucleation, propagation, and coalescence at the weaker TGO/bond coat interface. With further thermal exposure, coalescence of interfacial separations created a connected crack. The TBC detached and final failure occurred at the TGO/bond coat interface, leading to spallation of TBC when cooling to ambient. The stress distributions in the TGO layer with different thermal exposure times were also measured using luminescence spectroscopy. The stresses were independent of time after a transient period from θ-Al2O3 to α-Al2O3 scale. It is suggested that the lifetime of AIP/D-gun TBCs with an HSP–YSZ coat is controlled by the initiation and linking of a sub-critical interfacial crack.  相似文献   

11.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

12.
Nanostructured zirconia coatings have been prepared by atmospherical plasma spraying (APS) on NiCrAlY-coated superalloy substrates. The isothermal oxidation test results indicate that the oxidation kinetics of nanostructured TBC follows a parabolic law and the oxidation resistance of the nanostructured TBC is comparable to that of the conventional TBC. The nanostructured thermal barrier coatings exhibit excellent thermal cyclic resistance and low thermal diffusivity. The failure of the nanostructured TBC occurs within the top coat and close to the YSZ/thermal growth oxide interface. The thermal diffusivity of the coating is 90% of that of conventional thermal barrier coatings, and it increases after heat treatment at 1050 °C for 34 h. The increase in the thermal diffusivity of the coating is ascribed to grain growth, the crack healing as well as sintering neck formation.  相似文献   

13.
In this study, yttrium aluminum garnet/yttria-stabilized zirconia (YAG/YSZ) double-ceramic-layer thermal barrier coatings (DCL TBC) and yttria-stabilized zirconia (YSZ) single-ceramic-layer thermal barrier coatings (SCL TBC) were deposited by atmosphere plasma spray (APS) on the Inconel 738 alloy substrate, and isothermal oxidation tests were performed to investigate the formation and growth behavior of thermally grown oxide (TGO). Results showed that the Al2O3 TGO thickness of both TBC groups increased by increasing the isothermal oxidation time,and then slowly decreased with the appearance and growth of the adverse multilayer structure comprising CoCr2O4, (Ni,Co)Al2O4, NiCr2O4, and NiO mixed oxides. However, since the significant inhibition effect of the YAG coating to oxygen ionic diffusion, the mixed oxides appearance time and TGO growth behaviors were delayed in the DCL TBC. As a result, the TGO thickness of the DCL TBC was always smaller than that of the SCL TBC in the entire oxidation process. And the Al2O3 layer thickness proportion in the total TGO of the DCL TBC was greater than or equal to that of the SCL TBC after oxidation for the same period. The results of weight gain showed that compared with the SCL TBC, the parabolic oxidation rate of the DCL TBC was decreased approximately 35%. Consequently, the DCL TBC has better high-temperature oxidation resistance than the SCL TBC.  相似文献   

14.
The trends recently observed in crack propagation studies under bending for thermal barrier coatings (TBCs) in power plant application are highlighted in this paper. These studies described were performed with plasma sprayed zirconia bonded by a MCrAlY layer to Ni-base superalloy. Such thermal barrier composites are currently considered as candidate materials for advanced stationary gas turbine components. The crack propagation behaviour of the ceramic thermal barrier coatings (TBCs) at room temperature, in as received and oxidized conditions reveals that cracks grow linearly in the TBC with increase in bending load until about the yield point of the superalloy is reached. Approaching the interface between the ceramic layer and the bond coat, a high threshold load is required to propagate the crack further into the bond coat. Once the threshold is surpassed, the crack grows rapidly into the brittle bond coat without an appreciable increase in the load. At a temperature of 800°C, the crack is found to propagate only in the TBC (ceramic layer), as the ductile bond coat offers an attractive sink for stress relaxation. Effects of bond coat oxidation on crack propagation in the interface regime have been examined and are discussed. ©  相似文献   

15.
The PS-PVD method was used to prepare 7YSZ thermal barrier coatings (TBCs) and NiCrAlY bond coatings on a DZ40 M substrate. To prevent oxidation of the coating, magnetron sputtering was used to modify the surface of TBCs with an Al film. To explore the stability of TBCs during thermal cycling, water quenching was performed at 1100 °C, and ultralong air cooling for 16,000 cycles was performed. The results showed that before water quenching and air cooling, the top surface structure of the 7YSZ TBCs changed. After water quenching, the surface of the Al film was scoured and broken, the surface peeled off layer-by-layer, and cracks formed at the interface between the thermally grown oxide and NiCrAlY. During air cooling of the thermal cycle, the Al film reacted with O2 in the air to form a dense Al2O3 top layer that coated the cauliflower-like 7YSZ surface and maintained the feather-like shape. At the same time, the TGO layer between 7YSZ and NiCrAlY grew and cracked. The two thermal cycles of water quenching and air cooling led to different failure mechanisms of TBCs. Water quenching failure was caused by layer-by-layer failure of the 7YSZ top coat, while air cooling failure occurred due to the internal cracking of the TGO layer at the 7YSZ/NiCrAlY interface and the failure of the TGO/NiCrAlY interface.  相似文献   

16.
《Ceramics International》2023,49(8):12042-12053
A thermal shock test was conducted on an 8 wt% Y2O3 stabilized ZrO2 electron beam-physical vapor deposited (EB-PVD 8YSZ) thermal barrier coating with a (Ni, Pt)Al bond coating on the substrate with different curvature signs. The microstructural evolution and durability have been characterized. The microstructure of the top ceramic layer is strongly dependent on the substrate geometry. The results of the thermal shock test indicated that the sample with a positive curvature exhibits mixed mode spalling by the linking of cracks at TBC/TGO interface and TGO/BC interface. Spallation occurs primarily at the TGO/BC interface and inside the bond coats near to the surface of bond coats in planar samples. The spalling occurs principally at the TGO/BC interface in specimens with a negative curvature. The failure mechanism is elucidated integrate with stress analysis.  相似文献   

17.
《Ceramics International》2022,48(6):7864-7875
Based on the ultrasonic C-scan results of 8YSZ coatings after thermal cycles, three-dimensional cylindrical numerical simulations of the physical geometry model of the thermal barrier coating (TBC) sinusoidal surfaces were conducted with finite elements to estimate the stress distribution and evolution law of the top coat (TC)/bond coat (BC) interface, including the centre and edge of the specimen affected by the dynamic growth of the thermally grown oxide (TGO). The results show that when a layer of TGO is grown on the TC/BC interface, compressive stress is uniformly distributed on the TGO interface, and the stress value decreases as a function of the TGO layer thickness. When the thickness of the TGO exceeds a certain value, the compressive stress of all parts of the interface gradually changes to tensile stress; meanwhile, the edges of the model affected by the crest and trough effects of the wave are reflected in the radial and circumferential directions, especially along the axial direction, with alternating concentrated tensile and compressive stresses. TGO growth imposes a minor influence on the magnitude and distributions of the radial and circumferential stresses at the BC interface. The linear elasticity, creep, fatigue, and stress accumulation effects of each layer of TBCs in each thermal cycle were fully considered in this model. The model not only interprets the crest and trough effects of the TC/BC surface interface during the growth of TGO, but also interprets the effects of the core and edge of the cylindrical model, further revealing the reason for which the core and edge of the TBC will most likely form cracks.  相似文献   

18.
The growth of thermally grown oxide (TGO) layers in thermal barrier coatings (TBCs) due to the oxidation of the bondcoat alloy is a critical factor affecting the durability of TBCs. In the present study, diverse TBC specimens were subjected to long-term oxidation at various temperatures. The TGO growth mechanism was investigated according to cross-sectional images of the oxidized specimens. Impedance spectroscopy (IS) was performed to measure the electrical properties of the integrated TBCs non-destructively. Considering the influence of the TGO composition, the derived TGO electrical capacitance was found to have a good correspondence to the observed TGO thickness over a wide range 0–18.3 μm, regardless of the diverse specimens and oxidation conditions. The error was less than ±2.0 μm. With a certain design of the electrode size, IS is generalized and is recommended as an accurate and practical non-destructive evaluation method for the determination of TGO thickness within a very wide range in TBC systems under real operating conditions.  相似文献   

19.
Three different Si/Yb-silicate environmental barrier coating systems (EBCs) were atmospheric plasma sprayed using various spray currents (275, 325, 375 A) for Yb-silicate deposition. The EBCs were thermally cycled between room temperature and 1300 °C up to 1000 h in air. Additionally, bare Si coatings were tested under isothermal and thermal cycling conditions in the as-sprayed state and after polishing at 1300 °C in air. Parabolic oxidation kinetics were observed and oxidation protection provided by Yb-silicate was found to be influenced by the spray conditions, i.e. only at 325 A, Yb-silicate was effectively protecting the bond coat. The controlling mechanism was attributed to densification in the Yb-silicate layer during thermal cycling, which was quantified via image analysis. The surface finish of the Si coating was also found to be influencing the oxidation rate. The TGO was thinner and less cracked on polished APS Si coating in comparison with the as-sprayed Si coating surface.  相似文献   

20.
The anisotropic mechanical properties and contact damage of air-plasma-sprayed (APS) zirconia-based thermal barrier coatings (TBCs) have been investigated using Vickers and Hertzian indentation tests as functions of the nature of the bond coating and the degree of thermal exposure. The hardness values of the TBC systems are dependent on the applied load at relatively low loads, and became saturated at a load of 30 N, independent of the nature of the bond coating or the degree of exposure. The values of the top coating obtained on the top surface from the Vickers indentation tests were higher than those on the sectional plane, indicating that there is an anisotropic strain behavior due to the microstructure. The regions near to the interface of the top coating and the thermally grown oxide (TGO) layer show higher values after thermal exposure, whereas the values of the APS bond coating increased and the indentation values of the high-velocity oxygen fuel (HVOF) sprayed bond coating slightly decreased after thermal exposure, owing to resintering and element deficiency during thermal exposure, respectively. In contact damage tests, the TBC system with the HVOF bond coating showed less damage than the TBC system with the APS bond coating. The shape of the damage was different between the two systems. After thermal exposure, the damage was reduced in both TBC systems, and the cracking or delamination formed at the regions near to the interface of the top coating and the TGO layer in both TBC systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号