首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dielectric ceramics were synthesized and characterized in the BaO–La2O3–TiO2–Ta2O5 quaternary system for the three typical compositions: Ba3La3Ti5Ta5O30, Ba4La2Ti4Ta6O30 and Ba5LaTi3Ta7O30, which formed the filled tungsten-bronze structures. The present ceramics indicated high dielectric constant ε (127.7–148.1) and low dielectric loss tanδ (in the order of 10−4–10−3 at 1 MHz). Meanwhile, the temperature coefficient of dielectric constant τε varied from −728 to −1347 ppm/°C with increasing Ba and Ta and decreasing La and Ti concentration in the temperature range of 20–85 °C. The present ceramics are promising candidates for high-ε and low loss dielectric ceramics, and the suppression of τε should be the primary issue in the future work.  相似文献   

2.
《Ceramics International》2020,46(15):23567-23581
Energy harvesting from mechanical energy around ambient by flexible nanogenerators is one of the most efficient ways to generate green and renewable energy. Lead zirconate titanate (PZT) particles were embedded into a polyvinylidene fluoride (PVDF) polymer matrix to prepare mixed 0–3 and 1–3 connectivity nanocomposite fibers by electrospinning method. Various theoretical models of Maxwell-Garnett, Rayleigh, and Tinga etc were presented at two different Classes to predict the dielectric constant of PVDF-PZT nanocomposite fibers and compared the predicted results with the experimental results. Also, the piezoelectric properties like the piezoelectric coefficient (d33) and piezoelectric voltage coefficient (g33) were predicted by the Furukawa model and the predicted values were compared with the experimental values. Finally, the experimental model was derived to predict the dielectric constant of binary composites with mixed 0–3 and 1–3 connectivity. Compared to well-known models, the proposed experimental model accurately predicted the dielectric constant of PVDF-PZT nanocomposite fibers. The highest and lowest difference between the theoretical and the experimental results were obtained 12.24% and 0.12% for PZT volume fractions 1.1 and 17, respectively. Also, due to the linear relationship between the dielectric constant and piezoelectric coefficients, this model was generalized to predict the piezoelectric coefficients.  相似文献   

3.
《Ceramics International》2016,42(11):13207-13214
In this paper, we present the colossal dielectric behavior of T-type La2CuO4-δ (LCO) ceramics synthesized in fine grained form using wet chemical “Pechini” process, followed by annealing in argon (Ar) atmosphere. The colossal dielectric constant (CDC) (103≤εr′≤104) displayed over a wide frequency (1 Hz ≤f ≤ 1 MHz) and temperature (−100–150 °C) ranges was equally complimented by the remarkably low dielectric losses (0.01≤ tan δ≤0.1) for LCO ceramics, which are the lowest reported dielectric losses for the T-type La2CuO4 system, so far. This substantial decrease in losses could be attributed to the enhanced resistivity (108−109 Ω.cm) of the sample. Further, the origin of CDC, in this non-ferroelectric LCO, was investigated using combined ac impedance and modulus spectroscopy. The study revealed heterogeneity in electrical microstructure of LCO, with semiconducting grains and insulating grain boundaries. This electrically heterogeneous microstructure could give rise to the Internal Barrier Layer Capacitance (IBLC) mechanism, thus leading to apparent CDC in LCO.  相似文献   

4.
High performance expanded graphite (EG)–multiwalled carbon nanotube (MWCNT)/cyanate ester (CE) composites with very high dielectric constant, low dielectric loss and low percolation threshold were developed. In order to understand the electric and dielectric behavior of EG–MWCNT/CE composites, EG/CE and MWCNT/CE binary composites were also prepared for comparison. Results show that the ternary composites have greatly different electric and dielectric properties from the binary composites. The percolation threshold of the EG–MWCNT/CE composite is much lower than that of either the EG/CE or MWCNT/CE composite. With the same content of conductive fillers, the EG–MWCNT/CE composite shows a much higher dielectric constant than EG/CE and MWCNT/CE composites. In addition, to obtain the same dielectric constant, the dielectric loss of the EG–MWCNT/CE composite is lower than that of either binary composite. The difference is attributed to the synergistic effect between EG and MWCNT. The addition of EG not only improves the dispersion of MWCNTs in the resin matrix, but also helps to form conductive networks. An equivalent circuit model is proposed.  相似文献   

5.
《Ceramics International》2020,46(6):7050-7054
Phase evolution and microwave dielectric properties of SrTiO3 added ZnAl2O4–3Zn2SiO4–2SiO2 ceramics system were investigated. With the addition of SrTiO3, the sintering temperature for dense ceramic is reduced from 1320 °C to 1180–1200 °C. According to the nominal composition ZnAl2O4–3Zn2SiO4–2SiO2-ySrTiO3, phase evolution is revealed by XRD patterns and Back Scattering Electron images: Zn2SiO4, ZnAl2O4 and SiO2 phases coexist at y = 0; SrTiO3 reacts with ZnAl2O4 and SiO2 to form SrAl2Si2O8, TiO2 and Zn2SiO4 at y = 0.2 to 0.8, and SiO2 phase disappears at y = 0.8; new phase of Zn2TiO4 is obtained at y = 1. The existence of TiO2 has important effect on the dielectric properties. The optimized microwave dielectric properties are obtained at y = 0.6 and the ceramics show low dielectric constant (7.16), high-quality factor (57, 837 GHz), and low temperature coefficient of resonant frequency (−30 ppm °C−1).  相似文献   

6.
《应用陶瓷进展》2013,112(4):227-231
Abstract

Glass ceramics in the Li2O–Al2O3–SiO2 system have been synthesised to produce bulk materials grown in a glass phase via quenching followed by controlled crystallisation. The crystallisation and microstructure of Li2O–Al2O3–SiO2 (LAS) glass–ceramic with nucleating agents (B2O3 and/or P2O5) are investigated by differential thermal analysis, X-ray diffraction and scanning electron microscopy and the effects of B2O3 and P2O5 on the crystallisation of LAS glass are also analysed. The introduction of both B2O3 and P2O5 promotes the crystallisation of LAS glass by decreasing the crystallisation temperature and adjusting the crystallisation kinetic parameters, allows a direct formation of β spodumene phase and as a result, increases the crystallinity of the LAS glass ceramic. Microstructural observations show that the randomly oriented, nanometre sized crystalline is found with residual glass concentrated at crystallite boundaries. Furthermore, it is interesting that codoping of B2O3 and P2O5 creates not much effect on the crystallisation temperature. The dielectric properties of the glass–ceramics formed through controlled crystallisation have a strong dependence on the phases that are developed during heat treatment. The dielectric constant is continuously increased and the dielectric loss is decreased with addition of additives where mobile alkali metal ions (e.g. Li+) are incorporated in a crystal phase and minimise the residual glass phase.  相似文献   

7.
In this work, multiferroic composites were produced from CoFe2O4 and KNbO3 mixtures via control of the heat treatment temperature. For this, CoFe2O4 nanoparticles were produced by sol-gel method, while KNbO3 was synthesized by microwave-assisted hydrothermal synthesis. The powders were homogenized and subjected to heat treatment at 300, 400 and 500 °C for 5 h. The structural, electrical and magnetic properties were characterized. The results of X-ray diffraction indicated that there was no formation of secondary phases with heat treatment. Raman vibrational modes confirmed the presence of KNbO3 and CoFe2O4 in the prepared composites. SEM analysis showed that the composite microstructure consists of smaller ferrite particles arranged on the surface of largest cubic KNbO3 particles. The improvement of coercivity (HC = 382.1Oe) and dielectric constant (?’~7860) was observed for the composite thermally treated at 300 °C. The obtained results show the potential application of KN:CFO composites for multifunctional devices.  相似文献   

8.
《Ceramics International》2016,42(9):11003-11009
A low temperature sintering method was used to avoid the relatively high sintering temperatures typically required to prepare 0.67CaTiO3–0.33LaAlO3 (CTLA) ceramics. Additionally, CeO2 was introduced into the CTLA ceramics as an oxygen-storage material to improve their microwave dielectric properties. 0.67CaTiO3–0.33LaAlO3 ceramics co-doped with B2O3–Li2O–Al2O3 and CeO2 were prepared by a conventional two-step solid-state reaction process. The sintering behavior, crystal structure, surface morphology, and microwave dielectric proprieties of the prepared ceramic samples were studied, and the reaction mechanism of CeO2 was elucidated. CTLA+0.05 wt% BLA+3 wt% CeO2 ceramics sintered at 1360 °C for 4 h exhibited the optimal microwave dielectric properties: dielectric constant (εr)=45.02, quality factor (Q×f)=43102 GHz, and temperature coefficient of resonant frequency (τf)=2.1 ppm/°C. The successful preparation of high-performance microwave dielectric ceramics provides a direction for the future development and commercialization of CTLA ceramics.  相似文献   

9.
New microwave dielectric ceramics, i.e. Mg4(Nb2−xTax)O9 (MNT) solid solutions, were synthesized and their microwave dielectric properties and crystal structure were investigated in this study. From the discrete variational Xα (DV-Xα) method, it was found that the Ta–O bonds in the TaO6 octahedron become more covalent than Nb–O bonds in the NbO6 octahedron; this result leads to the decrease of the ionicity in the Ta5+ ion. The dielectric constants of MNT were slightly decreased from 12.4 to 11.5; this result might be due to the covalent interaction of Ta–O bonding. The quality factors of the samples were found to exhibit high value (Q·f≒350 000 GHz for x=2) which is comparable to those of Al2O3.  相似文献   

10.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

11.
CaCu3Ti4O12 precursor powders were synthesized by the sol–gel process. The optimized processing parameters for the synthesis of precursor powders were as follows: the Ti concentration was 0.60 mol/L, the pH value of the sol was 1.58, and the aging time of the sol was 6 h. After sintering at 1100 °C for 15 h, the CCTO ceramics with the highest density and fine-grained microstructure were obtained, exhibiting outstanding dielectric properties: ε′≈3.50×104 and tan δ=0.014 (at 1 kHz). The low dielectric loss was attributed to the highest grain boundary resistance which significantly reduced the leakage current across grain boundaries. A broad dielectric relaxation peak was observed around 300 °C. The complex impedance spectroscopy analysis suggested that the obtained CaCu3Ti4O12 ceramics were electrically heterogeneous, consisting of semiconducting grains and insulating grain boundaries. The calculated grain boundary resistance and grain resistance were 0.87 MΩ and 3.50 Ω, respectively.  相似文献   

12.
The La2O3–B2O3 (LB) addition, synthesized using the traditional solid-state reaction process, was chosen as a novel sintering aid of the low temperature co-fired CaO–B2O3–SiO2 (CBS) glass–ceramic. The effects of LB on the flexural strength and microwave dielectric properties have been investigated. The LB addition promotes the crystallization of the CaSiO3 but high amount of the LB addition leads to the formation of more pores. The CBS sample with 4 wt% LB addition sintered at 850 °C for 15 min shows good properties: flexural strength = 193 MPa, ?r = 6.26 and loss = 9.96 × 10?4 (10 GHz).  相似文献   

13.
55 B2O3 – 15 SiO2 – 30 Na2O: x WO3, (x ranging from 0 to 5 wt%) glass composites were prepared according to the melt-quenching procedure. The prepared samples were characterized via X-ray diffraction and broad band dielectric spectroscopy (viz., dielectric constant (ε1), tanδ and AC conductivity (σAC) over a wide range of frequency and temperature). No sharp peaks were shown in the XRD pattern and is evidence of the amorphous nature of the samples. It turns out that the values of ε1 and ε2 are increasing at higher temperatures particularly at lower frequencies. The energy barrier height, WM values decreased as 0.27, 0.25 and 0.22 while showed value of 0.29 eV for 5.0 wt% WO3. In the dielectric modulus plots, two relaxation processes are found especially on the higher temperature side. It also shifted a higher frequency with increasing temperature. The values of exponent s have been found to lie between 0.48 and 0.74, which confirms that the conduction mechanism in the glass samples follows the correlated barrier hopping model. By calculating the activation energy associated with the relaxation processes and DC conductivity, it was found that the values are close, which indicates that the same charges contribute to the two processes.  相似文献   

14.
《Ceramics International》2020,46(4):4215-4221
Alumina is widely used as a coating on a metal implant due to its favorable mechanical and biological properties. In this research, in order to improve mechanical and biological properties of alumina, a composition of nanoparticles of alumina (instead of microparticles) and titanium diboride micro powder is introduced. The atmospheric plasma spray (APS) technique was applied to deposit Al2O3–TiB2 on the pure titanium substrate. The properties of Al2O3–TiB2 nanocomposite coatings with various weight percent of TiB2 (20, 30 and 40 wt%) were experimentally studied. The characteristics of nanocomposite films of TiB2 (20, 30 and 40 wt%) were analyzed using Field Emission Scanning Electron Microscopy (FE-SEM), energy dispersive electron spectroscopy (EDX) and X-Ray Diffraction (XRD) tests. The XRD spectra exhibited that in addition to alumina and titanium diboride, the films contained titania. Thickness and morphology of the films were calculated from FE-SEM images and the thickness of the optimized coating (Al2O3-30 wt% TiB2) was about 30–45 μm. Also, the roughness, corrosion resistance, hardness and cytotoxicity (MTT) tests were studied. The highest of hardness and roughness of the samples were obtained from Al2O3-30 wt% TiB2. According to the obtained results from the polarization test, Al2O3-30 wt% TiB2 coating had the highest corrosion resistance (222558.9962 Ω cm2). Therefore, the toxicity of Al2O3-30 wt% TiB2 was investigated as the optimized coating and the results confirmed its non-toxicity and biocompatibility.  相似文献   

15.
A series of new microwave dielectric ceramics with ultralow dielectric loss in Na2O–WO3 binary system were prepared by the modified solid-state reaction method at ultra-low sintering temperatures. Three stable phases, namely Na2WO4, Na2W2O7 and Na2W4O13, were formed in the system. Their stability in the air, phase composition, compatibility with metal electrodes, microstructures, and microwave dielectric properties were investigated. In this binary system, the cubic structure Na2WO4 ceramic sintered at 565°C exhibited the best microwave dielectric properties with a permittivity of 5.6, a Q × f value of 124 200 GHz and a temperature coefficient of −63 ppm/°C at a frequency of 13.1 GHz. The Na2WO4 ceramic is chemically compatible with Ag and Al electrodes. Besides, the Na2WO4 ceramic has favorable stability in the air. Due to the excellent dielectric properties and favorable stability in the air, the Na2WO4 ceramic is a great candidate for LTCC devices.  相似文献   

16.
Metal oxide nanoparticles and their composites with conducting polymers, specifically Polyaniline (PANI) were utilized for fabricating nanoscale supercapacitor (SC) electrode materials. In the present study, we have synthesized pristine Pr2O3, NiO, Co3O4 nanoparticles, binary PANI-Pr2O3, PANI-NiO, PANI-Co3O4, ternary Pr2O3–NiO–Co3O4, and quaternary PANI-Pr2O3–NiO–Co3O4 spherical core-shell nanocomposite using co-precipitation and ultra-sonication methods. The grown samples were characterized with different analytical techniques. The XRD pattern revealed that the as-synthesized products were crystalline with Pr2O3 hexagonal phase, NiO cubic phase, and Co3O4 cubic phase in pure and nanocomposites. The Williamson-Hall, Scherrer, and size-strain plot methods were employed to study the crystalline development and contribution of micro-strain. FTIR pattern exhibited the metal-oxygen and PANI bond vibrations. FE-SEM images shown the spherical core-shell shape morphology of quaternary nanocomposite. EDX evident the presence of praseodymium, cobalt, and nickel in synthesized samples. UV–vis spectroscopy confirmed the absorption in the visible region. The IV graphs showed a higher conductivity of quaternary nanocomposite. The cyclic voltammetry results revealed that the quaternary nanocomposite has a higher specific capacitance 500 Fg-1 as compared to binary nanocomposites 134 F g?1 (PANI-Pr2O3), 143 F g?1 (PANI-Co3O4), 256 F g?1 (PANI-NiO), and PANI (90.8 F g?1) at a scan rate of 5 m Vs?1. The GCD results also showed that the quaternary nanocomposite has a higher specific capacitance of 905 F g?1 at current density 1 A g?1 with maximum energy density and power density of 87.99 kWhkg-1 and 2.6 k W kg?1, respectively. The EIS curve also confirmed that the quaternary nanocomposite has a lower polarization resistance (Rp) and solution resistance (Rs). The higher capacitance of quaternary nanocomposite can facilitate ion transfer, and the formation of its core-shell structure flourish to enhance surface-dependent electrochemical properties. Furthermore, this study gives a novel research idea to manufacture electrode materials for supercapacitors.  相似文献   

17.
The vaporization behaviour of pure Al2O3, Y2O3 and SiC as well as SiC–Al2O3 and SiC–Al2O3/Y2O3 mixtures has been analysed by thermodynamic calculations in an open system. Pure Al2O3 and Y2O3 evaporate congruently in the 1200–2300 K temperature range. Pure SiC vaporizes in a non-congruent manner leading to graphite formation as by-product. A SiC–Al2O3 mixture evaporates congruently according to the main vaporization reaction, 2 SiC(s) + Al2O3(s) +Al2O(g) ⇆ 2 SiO(g) + 2 CO(g) +4 Al(g), but the overall composition changes: for SiC rich samples, the mixture tends towards pure SiC in time, and for Al2O3 rich samples towards pure Al2O3. A SiC–Al2O3/Y2O3 mixture shows similar behaviour.  相似文献   

18.
First, polyimide (PI)–epoxy resin (EP) polymer matrix was prepared from 3,3′-diethyl-4,4′-diamino diphenyl methane (DEDADPM), benzophenone tetracarboxylic acid dianhydride (BTDA) and epoxy resin (E-51), through thermal imide process. Then, the nanometer alumina (Al2O3) modified by the coupling agent, (3-aminopropyl)triethoxysilane (KH550), was doped into the PI–EP polymer matrix, using an in situ sol–gel method to prepare a series of KH550-Al2O3/PI–EP nanocomposite materials based on different KH550-Al2O3 contents. Fourier transform infrared spectroscopy (FTIR) indicated that in the presence of chemical reaction between poly(amic acid) and epoxy resin, an imide ring was formed, the thermal imidization reaction of the materials was completed and the KH550-Al2O3 had doped into the PI–EP polymer matrix. The heat-resistance, dielectric specification and mechanical properties of KH550-Al2O3/PI–EP nanocomposite materials were evaluated. The results showed that the decomposition temperatures were ranged between 438 and 450 °C, dielectric constant and dielectric loss were in the range of 3.32–3.71 and 1.5 × 10?3–2.5 × 10?2, respectively, and they all increased with the increase of KH550-Al2O3 content (0–10 wt%), but the shear strength first increased and then decreased, attained its maximum value of 10.64 MPa at 8 wt%, which was about 119 % higher than that of undoped material. The adhesive forces of nanocomposite materials were all at higher level (one or two levels). Thus, the overall performance of KH550-Al2O3/PI–EP nanocomposites was the best when the doping amount of KH550-Al2O3 was 8 wt%. The properties such as high heat-resistance, dielectric properties and ready attachment of impregnating varnish to steel plate with very high strength fully met the necessary requirement.  相似文献   

19.
《Ceramics International》2020,46(9):13414-13423
The element/phase loss is undesirable but existing during selective laser melting (SLM) of materials with volatile element/phase, which not only changes the material composition but also affects the molten pool flow. In the previous researches, the effect of remelting on the element/phase loss was neglected during the SLM process, instead, laser energy density was thought to be uppermost. In fact, the SLM process fabricates the parts in a manner of line by line and layer by layer, i.e., additive character, and the remelting in the overlap zone occurs during the SLM process. In this paper, three different Al2O3 loss prediction models of SLM Al2O3–Al composite by considering the additive character of SLM and the distribution of the Al2O3 associated with the different molten pool driving forces were developed. By comparing with the experimental results and predicted results, it is found that the Al2O3 is distributed on both sides of the molten pool under the combined action of the Marangoni flow and the evaporation recoil pressure. This kind of Al2O3 distribution enhances the effect of the remelting on the Al2O3 loss, i.e., the remelting brings a logarithmic increase in the Al2O3 loss rate. This determines the final Al2O3 loss rate of the SLMed 3D samples. During this study, although the Al2O3 loss rate of the single-track is only 33%, the loss rate of SLMed 3D samples increases significantly to 97% when the hatching space of 60 μm and scanning speed of 200 mm/s are utilized, i.e., almost no Al2O3 in the 3D sample. Thus, it is more important to reduce the remelting, i.e., overlap rate for reducing the element/phase loss. This study is a benefit for understanding and reducing the element/phase loss in SLM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号