首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2022,48(5):6808-6818
In this study, experimental investigations were carried out to estimate the mechanical and microstructural properties of polypropylene (PP) and steel fiber reinforced geopolymer mortar. Two industrial by-products are used as binders to produce the geopolymer composites, i.e., fly ash (FA) and ground granulated blast furnace slag (GGBFS). Different percentages of PP and steel fibers are used in geopolymer mortars to find the mechanical properties such as compressive, splitting tensile and flexural strengths were investigated to understand the strength behavior. However, the compressive elastic modulus values were estimated through the proposed equation based on the compressive strength of the fiber reinforced geopolymer composite samples. Moreover, to understand the geopolymeic reaction, microstructural studies, i.e., scanning electron microscopy (SEM), were conducted. The experimental results revealed that the addition of PP fibers up to 2.0% (volume fraction) enhanced the flexural properties of geopolymer mortar samples. The compressive strength of the steel fiber-reinforced geopolymer composite reached a maximum of 2.5% volume fraction, being a 13.26% improvement over the control mix. The flexural toughness index of the PP and steel fiber reinforced composites improved with increasing the fraction. However, steel fiber reinforced geopolymer samples are shown better flexural toughness compared to PP fibers. The SEM analysis of the geopolymer control mix achieved a good degree of geopolymerization and both the fibers yielded a considerable interfacial bonding with the geopolymer paste.  相似文献   

2.
The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C3S, β-C2S, C3A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, 29Si and 27Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C-S-H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC-geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC-geopolymer composite stronger than hydrated OPC paste alone.  相似文献   

3.
The influence of the compounding route of polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM)/nano‐CaCO3 composites on their properties, including their mechanical properties, the dispersion degree of nano‐CaCO3, and the morphology of EPDM, was studied. The results showed that the toughness of the composites and the morphology of the EPDM particles were markedly influenced by the compounding route, whereas the dispersion degree of nano‐CaCO3 in the matrix was little influenced by the compounding route. The impact strength of composites prepared by one route was about 60 kJ/m2 with 20 wt % nano‐CaCO3. The results indicated that a sandbag of nano‐CaCO3 embedded in EPDM could effectively improve the toughness of the composites. A sandbag composed of EPDM and nano‐CaCO3 eliminated the deterioration effect of the nano‐CaCO3 agglomerate on the toughness of the composites, whereas the nano‐CaCO3 agglomerate separately dispersed in PP decreased the toughness of the tercomponent composite © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

4.
Here, we introduce a nozzle injection technique for carbon fiber-reinforced cement paste leading to unidirectional alignment of cement-embedded short carbon fibers that follow the movement direction of the guided nozzle. In comparison to non-reinforced cement pastes, this novel material exhibits a tremendous increase of its flexural strength upon admixing and aligning 1 to 3 percent (by volume) of chopped carbon fibers. Cement pastes containing carbon fibers aligned in the stress direction thus acquire high compressive and flexural strength values at the same time. Mechanical tests prove the material to withstand flexural loads larger than 100 MPa in conjunction with a deflection hardening behavior resembling that of high performance fiber-reinforced cementious composites at relatively low fiber volume content. Insights into the preparation, fiber alignment, rheology and the fracture behavior of this material are presented in this study.  相似文献   

5.
张兰芳  尹玉龙  岳瑜 《硅酸盐通报》2016,35(9):2724-2728
研究了掺入0.05%~0.35%的玄武岩纤维对混凝土的抗压强度,劈裂抗拉强度以及弯曲性能的影响,并采用扫描电镜对纤维在混凝土中的微观作用机理进行了分析。结果表明,当纤维的掺量在0.3%以内时,混凝土3 d、7 d、28 d的抗压、抗拉强度都有不同程度的提高,当掺量超过0.3%时,混凝土28 d的抗压、抗拉强度开始下降,且掺量越大,强度下降的也越多;弯曲试验结果表明,掺入0.05%~0.25%的玄武岩纤维后,混凝土的抗折强度平均提高7.96%,掺量为0.2%时,抗折强度提高17.0%,且掺入玄武岩纤维后,混凝土的应力-应变曲线有了明显的屈服点,混凝土的极限拉伸值增大,弹性模量降低,刚度减小,延性与柔性增加,混凝土的抗裂性增加,使用寿命延长。  相似文献   

6.
《Ceramics International》2017,43(5):4576-4582
This paper presents the effects of microfibre contents on mechanical properties of fly ash-based geopolymer matrices containing glass microfibres at 0, 1, 2 and 3 mass%. The influence of glass microfibres on the fracture toughness, compressive strength, Young's modulus and hardness of geopolymer composites are reported, as are the microstructural properties investigated using scanning electron microscopy. Results show that the addition of 2 mass% glass microfibres was optimal, exhibiting the highest levels of fracture toughness, compressive strength, Young's modulus and hardness. The results of the microstructural analysis indicate that the glass microfibres act as a filler for voids within the matrix, making a dense geopolymer and improving the microstructure of the binder. This leads to favourable adhesion of the composites, and produces a geopolymer composite with good mechanical properties, comparable to pure geopolymer. The failure mechanisms in glass microfibre-reinforced geopolymer composites are discussed in terms of microstructure.  相似文献   

7.
《Ceramics International》2016,42(10):12239-12245
In this paper, unidirectional SiC fiber (SiCf) reinforced geopolymer composites (SiCf/geopolymer) were prepared and effects of fiber contents on the microstructure and mechanical properties of the composites in different directions were investigated. The XRD results showed that addition of SiCf retarded geopolymerization process of geopolymer matrix by weakening the typical amorphous hump. SiCf in all the composites were well infiltrated by geopolymer matrix, but microcracks which were perpendicular to the fiber axial direction were noted in the interface area due to the thermal shrinkage of matrix during the curing process. With the increases in fiber contents, although Young's modulus of the composites increased continuously, flexural strength, fracture toughness and work of fracture increased at first, reached their peak values and then decreased. And when fiber content was 20 vol%, the composites showed the highest flexural strength, fracture toughness and work of fracture, which were 14.2, 15.2 and 81.6 times as high as those of pristine geopolymer, respectively, indicating significant strengthening and toughening effects from SiCf. Meanwhile, SiCf/geopolymer composites failed in different failure modes in the different directions, i.e., tensile failure mode in the x direction (in-plane and perpendicular to the fiber axial direction) and shear failure mode in the z direction (laminate lay-up direction).  相似文献   

8.
This paper describes the sulfate resistance of some hardened blended Portland cement pastes. The blending materials used were silica fume (SF), slag, and calcium carbonate (CaCO3, CC?). The blended cement pastes were prepared by using W/S ratio of 0.3. The effects of immersion in 10% MgSO4 solution under different conditions (room temperature, 60 °C, and drying-immersion cycles at 60 °C) on the compressive strength of the various hardened blended cement pastes were studied. Slag and CC? improve the sulfate resistance of ordinary Portland cement (OPC) paste. Mass change of the different mixes immersed in sulfate solution at 60 °C with drying-immersion cycles was determined. The drying-immersion cyclic process at 60 °C accelerates sulfate attacks. This process can be considered an accelerated method to evaluate sulfate resistance of hardened cement pastes, mortars, and concretes.  相似文献   

9.
A comparative study was performed of fly ash and nano‐CaCO3 as fillers in polybutadiene rubber with 0, 4, 8 and 12% fly ash and nano‐CaCO3. Uniform sheets were prepared of well‐compounded rubber. Nano‐CaCO3 was synthesized by in situ deposition. The CaCO3 nanoparticles as reinforcing agents improved the tensile strength more than 50% than fly ash, and the toughness and hardness also increased significantly. Up to a 75% reduction in flammability and a 100% improvement in the tear strength were observed with nano‐CaCO3.© 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 6–9, 2005  相似文献   

10.
《Ceramics International》2020,46(12):20027-20037
Properties of fly ash (FA) and metakaolin (MK) based geopolymer/alkali-activated mortar modified with polyvinyl alcohol (PVA) fiber and nano-SiO2, including workability, compressive strength, flexural performance, elastic modulus and fracture property were tested in this study. PVA fiber content varies from 0 to 1.2%. Nano-SiO2 content is 0 and 1%. Adaptive neuro-fuzzy interfacial systems (ANFIS) method was used to establish the artificial intelligence (AI) model to predict the fracture parameters of geopolymer/alkali-activated mortars. The inputs of ANFIS models include PVA fiber content, nano-SiO2 content, compressive strength, flexural strength, elastic modulus, critical crack mouth opening displacement, crack load and peak load. The outputs of ANFIS model include critical effective crack length, initiation fracture toughness, unstable fracture toughness, and fracture energy. Experiment results showed that PVA fiber addition enhanced the mechanical properties especially the compressive strength and fracture performance, but decreased the workability. 0.8%–1.0% was considered as the optimal content of PVA fiber. Addition of 1% nano-SiO2 shows a slight improvement on both workability and mechanical properties of the mortar no matter how much fiber is added. Based on the ANFIS algorithm and 42 sets of experimental data, the trained models were proved to have high accuracy with root mean square error (RMSE) under 0.15, mean absolute error (MAE) under 0.01, and coefficient of determination (R2) over 0.85. The ANFIS model established in this study combined the fracture properties with the basic mechanical properties of geopolymer/alkali-activated composites, which can provide a new method to assess the fracture performance of geopolymer/alkali-activated mortars modified with PVA fiber and nano-SiO2 in the future.  相似文献   

11.
Abstract

Aluminosilicate type materials can be activated in alkaline environment and can produce geopolymer cements with low environmental impacts. Geopolymers are believed to provide good fire resistance so the effects of elevated temperatures on mechanical and microstructural properties of pumice based geopolymer were investigated in this study. Pumice based geopolymer was exposed to elevated temperatures of 100, 200, 300, 400, 500, 600, 700 and 800°C for 3?h. The residual strength of these specimens were determined after cooling at room temperature as well as ultrasonic pulse velocity, and the density of pumice based geopolymer pastes before and after exposing to high temperature was determined. Microstructures of these samples were investigated by Fourier transform infrared for all temperatures and SEM analyses for samples that were exposed to 200, 400, 600 and 800°C. Specimens, which were initially grey, turned whitish accompanied by the appearance of cracks as temperatures increased to 600 and 800°C. Consequently, compressive strength losses in geopolymer paste were increased with increasing temperature level. On the other hand, compressive strength of geopolymer paste was less affected by high temperature in comparison with the ordinary Portland cement. As a result of this study, it is concluded that pumice based geopolymer is useful in compressive strength losses exposed to elevated temperatures.  相似文献   

12.
Dense and strong calcite (CaCO3) ceramics were prepared by room-temperature cold sintering with the aid of water and high pressure of up to 900 MPa. Under atmospheric pressure, calcite is barely soluble in water. However, the microstructure evolution and stress-strain analysis during cold sintering revealed that the dissolution-precipitation, plastic deformation, and pressure-solution-creep mechanisms played a crucial role in the densification and mechanical robustness of calcite ceramics, which was attributed to the significantly enhanced solubility of calcite in water under high pressure. The calcite ceramic cold sintered under 900 MPa from micron powder exhibited the highest relative density of 92.1% and best mechanical properties with compressive strength, flexural strength, hardness, and Young's modulus of 276.5 MPa, 52.5 MPa, 1.64 GPa, and 53.7 GPa, respectively. The as-prepared calcite ceramic was stronger and harder than most stones and cement, indicating its promising application as novel building and biomimetic materials. The present study also provides a new strategy for densifying ceramics with low solubility by cold sintering.  相似文献   

13.
Acrylonitrile‐butadiene‐styrene (ABS)/poly(methyl meth‐acrylate) (PMMA)/nano‐calcium carbonate (nano‐CaCO3) composites were prepared in a corotating twin screw extruder. Four kinds of nano‐CaCO3 particles with different diameters and surface treatment were used in this study. The properties of the composites were analyzed by tensile tests, Izod impact tests, melt flow index (MFI) tests, and field emission scanning electron microscopy (FESEM). This article is focused on the effect of nano‐CaCO3 particles' size and surface treatment on various properties of ABS/PMMA/nano‐CaCO3 composites. The results show that the MFI of all the composites reaches a maximum value when the content of nano‐CaCO3 is 4 wt%. In comparison with untreated nano‐CaCO3 composites, the MFI of stearic acid treated nano‐CaCO3 composites is higher and more sensitive to temperature. The tensile yield strength decreases slightly with the increase of nano‐CaCO3 content. However, the size and surface treatment of nano‐CaCO3 particles have little influence on the tensile yield strength of composites. In contrast, all of nano‐CaCO3 particles decrease Izod impact strength significantly. Stearic acid treated nano‐CaCO3 composites have superior Izod impact strength to untreated nano‐CaCO3 composites with the same nano‐CaCO3 content. Furthermore, the Izod impact strength of 100 nm nano‐CaCO3 composites is higher than that of 25 nm nano‐CaCO3 composites. POLYM. COMPOS., 31:1593–1602, 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
To improve the impact toughness of polypropylene (PP), nano‐CaCO3 was prepared by an in situ synthesis. The surface of the nano‐CaCO3 was modified by KH‐550 silane coupling agent and NDZ‐401 titanium acid ester coupling agent. Nano‐CaCO3/PP composite materials were fabricated through a melt‐blending method and characterized, and their mechanical properties were analyzed. The impact toughness and the tensile strength of the PP were improved significantly by the incorporation of nano‐CaCO3. When the weight fraction of nano‐CaCO3 was 2%, the maximum impact toughness and tensile strength of the PP nanocomposites were 293% and 259%, respectively, of the values for neat PP. Observation of the impact fracture surface of the nanocomposites indicated that the dispersion of nano‐CaCO3 modified by NDZ‐401 coupling agent was more homogeneous than that of nano‐CaCO3 modified by the KH‐550 silane coupling agent. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
The mechanical properties of blocked polyurethane(PU)/epoxy interpenetrating polymer networks (IPNs) were studied by means of their static and damping properties. The studies of static mechanical properties of IPNs are based on tensile properties, flexural properties, hardness, and impact method. Results show that the tensile strength, flexural strength, tensile modulus, flexural modulus, and hardness of IPNs decreased with increase in blocked PU content. The impact strength of IPNs increased with increase in blocked PU content. It shows that the tensile strength, flexural strength, tensile modulus, and flexural modulus of IPNs increased with filler (CaCO3) content to a maximum value at 5, 10, 20, and 25 phr, respectively, and then decreased. The higher the filler content, the greater the hardness of IPNs and the lower the notched Izod impact strength of IPNs. The glass transition temperatures (Tg) of IPNs were shifted inwardly compared with those of blocked PU and epoxy, which indicated that the blocked PU/epoxy IPNs showed excellent compatibility. Meanwhile, the Tg was shifted to a higher temperature with increasing filler (CaCO3) content. The dynamic storage modulus (E′) of IPNs increased with increase in epoxy and filler content. The higher the blocked PU content, the greater the swelling ratio of IPNs and the lower the density of IPNs. The higher the filler (CaCO3) content, the greater the density of IPNs, and the lower the swelling ratio of IPNs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1826–1832, 2006  相似文献   

16.
Calcium carbonate binders were prepared via carbonating the paste specimens cast with steel slag alone or the steel slag blends incorporating 20% of Portland cement (PC) under CO2 curing (0.1 MPa gas pressure) for up to 14 d. The carbonate products, mechanical strengths, and microstructures were quantitatively investigated. Results showed that, after accelerated carbonation, the compressive strengths of both steel slag pastes and slag-PC pastes were increased remarkably, being 44.1 and 72.0 MPa respectively after 14 d of CO2 curing. The longer carbonation duration, the greater quantity of calcium carbonates formed and hence the higher compressive strength gained. The mechanical strength augments were mainly attributed to the formation of calcium carbonate, which caused microstructure densification associated with reducing pore size and pore volume in the carbonated pastes. In addition, the aggregated calcium carbonates exhibited good micromechanical properties with a mean nanoindentation modulus of 38.9 GPa and a mean hardness of 1.79 GPa.  相似文献   

17.
A nanosize CaCO3 filler was synthesized by an in situ deposition technique, and its size was confirmed by X‐ray diffraction. CaCO3 was prepared in three different sizes (21, 15, and 9 nm). Styrene–butadiene rubber (SBR) was filled with 2–10 wt % nano‐CaCO3 with 2% linseed oil as an extender. Nano‐CaCO3–SBR rubber composites were compounded on a two‐roll mill and molded on a compression‐molding machine. Properties such as the specific gravity, swelling index, hardness, tensile strength, abrasion resistance, modulus at 300% elongation, flame retardancy, and elongation at break were measured. Because of the reduction in the nanosize of CaCO3, drastic improvements in the mechanical properties were found. The size of 9 nm showed the highest increase in the tensile strength (3.89 MPa) in comparison with commercial CaCO3 and the two other sizes of nano‐CaCO3 up to an 8 wt % loading in SBR. The elongation at break also increased up to 824% for the 9‐nm size in comparison with commercial CaCO3 and the two other sizes of nano‐CaCO3. Also, these results were compared with nano‐CaCO3‐filled SBR without linseed oil as an extender. The modulus at 300% elongation, hardness, specific gravity, and flame‐retarding properties increased with a reduction in the nanosize with linseed oil as an extender, which helped with the uniform dispersion of nano‐CaCO3 in the rubber matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2563–2571, 2005  相似文献   

18.
A series of binary composites based on HDPE (high density polyethylene) and nanoinorganic particles such as nano‐CaCO3 and OMMT (organic montmorillonite) were prepared. Their properties including tensile, impact strength, and some thermal properties were tested. The results showed that binary composite has partial improvement in mechanical properties compared with pure HDPE. A ternary composite nano‐CaCO3/OMMT/HDPE was prepared and characterized. It was found that the mechanical and thermodynamic properties of this ternary composite have been enhanced greatly compared with both pure HDPE and binary composites. The tensile strength, Young's modulus, flexural strength, elastic modulus, and impact strength of nano‐CaCO3/OMMT/HDPE were increased 124.6%, 302.7%, 73.86%, 58.97%, and 27.25%, respectively. The DMA test results showed that the mechanical properties of ternary composite were increased because of the limitation on the movement of HDPE due to inorganic particles. The synergistic effect introduced by nanoparticles may play an important role in all these processes. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

19.
Nano‐calcium carbonate (nano‐CaCO3) was used in this article to fill acrylonitrile–butadiene–styrene (ABS)/poly(methyl methacrylate) (PMMA), which is often used in rapid heat cycle molding process (RHCM). To achieve better adhesion between nano‐CaCO3 and ABS/PMMA, nano‐CaCO3 particles were modified by using titanate coupling agent, aluminum–titanium compound coupling agent, and stearic acid. Dry and solution methods were both utilized in the surface modification process. ABS/PMMA/nano‐CaCO3 composites were prepared in a corotating twin screw extruder. Influence of surface modifiers and surface modification methods on mechanical and flow properties of composites was analyzed. The results showed that collaborative use of aluminum–titanium compound coupling agent and stearic acid for nano‐CaCO3 surface modification is optimal in ABS/PMMA/nano‐CaCO3 composites. Coupling agent can increase the melt flow index (MFI) and tensile yield strength of ABS/PMMA/nano‐CaCO3 composites. The Izod impact strength of composites increases with the addition of titanate coupling agent up to 1 wt %, thereafter the Izod impact strength shows a decrease. The interfacial adhesion between nano‐CaCO3 and ABS/PMMA is stronger by using solution method. But the dispersion uniformity of nano‐CaCO3 modified by solution method is worse. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
《Ceramics International》2016,42(5):6288-6295
In this study, ASTM Class C fly ash used as an alumino-silicate source was activated by metal alkali and cured at low temperature. Basalt fibers which have excellent physical and mechanical properties were added to fly ash-based geopolymers for 10–30% solid content to act as a reinforced material, and its influence on the compressive strength of geopolymer composites has been investigated. XRD study of synthesized geopolymers showed an amorphous phase of geopolymeric gel in the 2θ region of 23°–38° including calcium-silicate-hydrate (C-S-H) phase, some crystalline phases of magnesioferrite, and un-reacted quartz. The microstructure investigation illustrated fly ash particles and basalt fibers were embedded in a dense alumino-silicate matrix, though there was some un-reacted phase occurred. The compressive strength of fly ash-based geopolymer matrix without basalt fibers added samples aged 28 days was 35 MPa which significantly increased 37% when the 10 wt%. basalt fibers were added. However, the addition of basalt fibers from 15 to 30 wt% has not shown a major improvement in compressive strength. In addition, it was found that the compressive strength was strong relevant to the Ca/Si ratio and the C-S-H phase in the geopolymer matrix as high compressive strength was found in the samples with high Ca/Si ratio. It is suggested that basalt fibers are one of the potential candidates as reinforcements for geopolymer composites development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号