首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
微生物燃料电池(MFC)依阴阳极室是否直接连通,分为单室与双室型,依电极室(区)相对位置,分为水平、竖直及内外布设式。不同MFC结构影响电池内溶氧量、微生物选用、产电水平、底物降解能力等。对不同分隔材料在MFC中应用、不同MFC构型、各构型工作原理及功能特性进行了总结,在此基础上探究MFC技术的发展趋势和研究方向。  相似文献   

2.
微生物燃料电池阳极修饰的研究进展   总被引:2,自引:0,他引:2  
微生物细胞与电池阳极之间的电子转移速率是影响微生物燃料电池(MFC)产电性能的重要因素之一.通过阳极修饰可以促进电子转移速率,进而提高MFC产电性能.综述了MFC阳极修饰的研究进展.  相似文献   

3.
微生物燃料电池的发展仍处于瓶颈期,但其能实现同步污水处理和电能回收的功能,具有良好的发展前景。微生物燃料电池(Microbial Fuel Cells,MFCs)的主要机理是通过利用产电微生物氧化污水中的有机物,将存储在有机物中的化学能不经过其他能源形式直接转化为电能,而且该反应生成的产物无污染。其中,准确构建MFC系统,在降低成本的同时有效并重污染物去除和产电效能提升,是进一步探索微生物燃料电池领域的关键。文章重点对不同类型的燃料电池如海水微生物燃料电池、植物复合型微生物燃料电池进行分析,通过对比不同类型的电池性能,对其可实践性进行评估。最后,强调了微生物燃料电池(MFC)技术与应用的现状,并指出了微生物燃料电池的发展前景。  相似文献   

4.
运行因素对猪场废水微生物燃料电池产电性能的影响   总被引:1,自引:0,他引:1  
以猪场废水为基底构建双室微生物燃料电池,分别研究温度、pH和阳极液搅拌对微生物燃料电池(MFC)产电性能和废水净化效果的影响。结果表明,在一定范围内,温度的提升有助于增强微生物的电化学活性,微碱性条件下MFC的输出电压和功率密度更佳,阳极室的搅拌有利于提升电池产电和除污性能。实验确定了基于猪场废水处理微生物燃料电池的较优运行因素,为推动微生物燃料电池在污水处理方面的实际应用提供参考。  相似文献   

5.
微生物燃料电池最新研究进展   总被引:2,自引:1,他引:1  
介绍了微生物燃料电池(MFC)的原理、组成和特点,并针对MFC功率密度过低、构造成本高等问题,从筛选优势产电微生物、改善MFC的构造、优化电极材料以及提高电子传递效率等方面进行了介绍,同时还提到了提高产电性能的各种途径,最后对MFC的发展前景进行了展望.  相似文献   

6.
微生物燃料电池(MFC)技术近年来发展迅速,将其应用于废水处理具有理想的发展前景,是当下的研究热点之一。简要介绍MFC技术的原理、设计和特点,较全面地概述了目前MFC技术应用于废水处理的研究进展,并就该技术从实验室走向工程应用面临的挑战提出了现有的强化方法。最后展望了未来该技术在废水处理以及其他领域的应用和可持续发展。  相似文献   

7.
邹吉祥  颜美  果崇申 《广东化工》2022,49(3):108-111,101
光催化紧密耦合微生物燃料电池技术(ICPB)是将光催化与微生物燃料电池结合起来,同时具有光催化及微生物燃料电池(MFC)双重优点.影响其性能的因素主要有光催化剂,阴极和阳极.其主要原理是通过光催化将不易降解的大分子分解成小分子,进而被微生物通过新陈代谢作用氧化降解.ICPB比单一光催化或MFC更具有优势,本文从光催化剂的种类,光催化剂与MFC紧密耦合的方式以及IPCB的优势等方面进行了综述,并对未来的研究进行了展望.  相似文献   

8.
谢珊  欧阳科  丘露 《广东化工》2014,(10):76-77
微生物燃料电池(MFC)是一种利用微生物的代谢作用将化学能转化为电能的新技术,近年来受到广泛关注。文章综述了MFC阳极碳材料改性和优化的最新研究成果,介绍了碳材料改性阳极和碳基复合材料阳极的种类、理化特性、产电性能及其在MFC中的应用。  相似文献   

9.
微生物燃料电池及其应用研究进展   总被引:9,自引:1,他引:9  
简单叙述了微生物燃料电池(MFC)的基本结构及运行原理,从MFC的阳极微生物、阴极结构等方面介绍了MFC的发展现状和研究重点,分析了MFC在替代能源、生物传感器和开发新型水处理工艺等方面的应用前景,指出进一步的研究重点应放在改善电极电化学性能、提高电池输出功率密度和降低电池成本等方面。  相似文献   

10.
微生物燃料电池(MFC)可以在微生物的作用下,将有机物的化学能转变成电能,是一种新兴的燃料电池。MFC数学模型有助于简化MFC工作过程,可通过控制参数得到最大产电效率。根据反应所需极室个数,将MFC数学模型分为两大类:单室模型和双室模型。介绍了MFC数学模型近年来的研究进展,论述了代表性模型的优缺点及发展方向。  相似文献   

11.
Anode materials were used to construct microbial fuel cells(MFCs), and the characteristics of the anodes were important for successful applied performance of the MFCs. Via the cyclic voltammetry(CV) method, the experiments showed that 5 wt% multiwalled carbon nanotubes(MWNTs) were optimal for the PANI/MWNT film anodes prepared using 24 polymerization cycles. The maximum output voltage of the PANI/MWNT film anodes reached 967.7 mV with a power density of 286.63 mW·m~(-2). Stable output voltages of 860 mV, 850 mV, and870 mV were achieved when the anaerobic fluidized bed microbial fuel cell(AFBMFC) anodes consisted of carbon cloth with carbon black on one side, copper foam and carbon brushes, respectively. Pretreatment of the anodes before starting the AFBMFC by immersion in a stirred bacterial fluid significantly shortened the AFBMFC startup time. After the AFBMFC was continuously run, the anode surfaces generated active microbial catalytic material.  相似文献   

12.
石墨烯/聚苯胺复合阳极的制备及在MFC中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用化学氧化还原法制备高纯度石墨烯(GR),利用电化学修饰法得到石墨烯/聚苯胺(GR/PANI)膜阳极,采用红外光谱(FI-IR)、X射线衍射(XRD)、场发射扫描电镜(FESEM)对所制备复合电极进行了表征,采用循环伏安法(CV)、交流阻抗法(EIS)考察了复合电极的电化学性能。将GR/PANI膜阳极应用于固定床微生物燃料电池(MFC),考察了电池的产电性能。均匀地附着在石墨烯表面,GR/PANI膜电极具有良好可逆性,其电阻小、导电性良好。GR/PANI膜阳极应用于MFC,最大功率密度和开路电压分别为230.2 mW·m-2和834.6 mV,比未修饰阳极的最大功率密度和开路电压分别提高了110.6%和34.8%,GR/PANI膜阳极的表观内阻也由未修饰阳极的843.2Ω降低为469.4 Ω,且电池启动时间大大缩短,产电稳定性增强。结果表明,GR/PANI复合物是一种优良的电极材料,GR/PANI膜阳极MFC具有良好的产电性能。  相似文献   

13.
Composites of polyaniline (PANI) nanorods and multiwalled carbon nanotubes (MWNTs) coated with PANI were prepared by in situ polymerization with perchloric acid as a dopant. Transmission electron microscopy images showed that the coexisting composites of PANI nanorods and MWNTs coated with PANI were formed at low MWNT contents. The interaction between MWNTs and PANI was proved by Fourier transform infrared and ultraviolet–visible spectra. The electrical conductivity of a dedoped PANI/MWNT composite with a 16.3 wt % concentration of MWNTs reached 3.0 × 10?3 S/cm, which was 6 orders of magnitude higher than that of dedoped PANInanorods. The results also showed that coexisting composites of PANI nanorods and MWNTs coated with PANI had high electrochemical activity and good cyclic stability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Meining Zhang 《Carbon》2006,44(2):276-283
This paper describes a new strategy through noncovalent functionalization of multi-walled carbon nanotube (MWNTs) with supramolecular surfactant for layer-by-layer (LbL) assembling MWNT multi-layer film onto indium tin oxide (ITO)-coated glass plate and for attaching gold nanoparticles (GNPs) onto the MWNTs to fabricate GNP/MWNT nanohybrid. Surfactant (i.e., sodium dodecyl sulfate, SDS) can interact with the MWNTs through hydrophobic interaction between the hydrophobic chain of SDS and the sidewall of the MWNTs. Such an interaction essentially leads to noncovalent adsorption of SDS onto the MWNTs, resulting in an enhanced solubilization of the MWNTs in distilled water and providing some negative charges on the tube surface. Both properties make it possible to assemble MWNT multi-layer films onto the ITO plate through an alternative adsorption of oppositely charged SDS-functionalized MWNTs and polyelectrolyte [i.e., poly(diallyldimethylammonium chloride), PDDA] as revealed by scanning electron microscopy (SEM), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), quartz crystal microbalance (QCM), and cyclic voltammetry (CV). The same properties of the SDS-functionalized MWNTs are demonstrated to be useful for mediating the attachment of GNPs onto the tube surfaces to form GNP/MWNT nanohybrid as verified with transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemistry.  相似文献   

15.
An uniformly distributed film consisting of polyaniline (PANI) nanoparticles and carboxylic acid functionalized multiwalled carbon nanotubes (MWNTs‐COOH) was successfully assembled on ITO plates from a layer‐by‐layer (LBL) method by using electrostatic interactions as the main driving force. The good conjugation between PANI nanoparticles and MWNTs‐COOH resulted in significant electrochemical performance variation of the obtained films. In addition, the assembled MWNT‐COOH/PANI/ITO showed synergistic effect to the electrochemical oxidation of nifedipine (NIF) when used as a sensor. Compared with bare ITO, the oxidation potential of NIF can be decreased about 170 mV on MWNT‐COOH/PANI/ITO, and the lower detection limit of NIF was as low as 1.0 × 10?6 mol/L. In addition, the assembled electrode gave no responses to interferences such as glucose, urea, ascorbic acid, and trisodium citrate, which showed high selectivity for recognition and quantification of NIF. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43452.  相似文献   

16.
To exploit the outstanding ability of carbon nanotubes to facilitate electron transfer in a microbial fuel cell (MFC) system, multi-wall carbon nanotube (MWNT) and polyeletrolyte polyethyleneimine (PEI) were employed to modify carbon paper (TP) electrode utilizing a layer-by-layer (LBL) assemble technique for the first time, and the performance of the modified electrode as an anode in MFC was investigated. This modification strategy ensured a relatively high content of MWNTs within the polymer matrix. IR and cyclic voltammetry (CV) demonstrated the uniform formation of a polyethyleneimine/MWNT multilayer composite on the TP surface. The SEM profiles presented a three-dimensional MWNTs interwoven network surface structure with a large accessible surface area. Electrochemical impedance spectroscopy (EIS) measurements confirmed that the existence of polyelectrolyte/MWNT multilayers decreased the interfacial charge transfer resistance from 1163 to 258 Ω. With the modified anode, the MFC produced a higher power density with 20% enhancement comparing to the bare TP anode. The MWNT-based LBL self-assembled electrode is promising for the electricity production by MFC.  相似文献   

17.
In this work, multi-walled carbon nanotube (MWNT) bonded graphene (M-GR) composites were prepared using the chemical reduction of graphite oxide (GO) and acid treated MWNTs with different ratios. The M-GR/polyaniline (PANI) nanocomposites (M-GR/PANI) were prepared using oxidation polymerization. The effect of the M-GR ratio on the electrochemical performances of the M-GR/PANI was investigated. It was found that the substrate 2D graphene was coated with 1D MWNTs by chemical reduction and the M-GR was further coated with PANI, leading to increased electrical properties by the π–π interaction between the M-GR and PANI. In addition, the electrochemical performances, such as the current density, charge–discharge, and specific capacitance of the M-GR/PANI were higher than those of graphene/PANI and the highest specific capacitance (1118 F/g) of the composites was obtained at a scan rate of 0.1 A/g for the PANI containing a 0.5 M-GR ratio compared to 191 F/g for the graphene/PANI. The dispersion of the MWNTs onto the graphene surface and the ratio of M-GR had a pronounced effect on the electrochemical performance of the PANI-based composites, which was attributed to the highly conductive pathway created by the M-GR incorporated in the PANI-based composites and the synergistic effect between M-GR and PANI.  相似文献   

18.
One-dimensional growth of polyaniline (PANI) was conducted on carbon cloth through a pulse potentiostatic method. Hydrolysis of PANI was depressed, and the generated PANI film (PPM) displayed improved electroactivities. The specific capacitance of PPM was increased by 39% when compared to that of PANI film made by the conventional potentiostatic method (PM). The influences of the upper limit potential of the pulse potentiometry and the acidity of the polymerization solution on surface morphologies, electroactivities and conformation of the PANI films were studied by SEM, cyclic voltammetry, chronopotentiometry and UV-Vis spectrometry.  相似文献   

19.
Dao Jun Guo 《Carbon》2005,43(6):1259-1264
Silver (Ag) nanoparticles were electrocrystallized on 4-aminobenzene monolayer-grafted multi-walled carbon nanotubes (MWNTs) by a potential-step method. The structure and nature of the resulting Ag/MWNT composite were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD), the results show that the electrochemically synthesized Ag nanoparticles were homogeneously dispersed and well-separated from one another on the modified MWNT surfaces. The electrocatalytic properties of the Ag/MWNT electrode for oxidation of methanol in alkaline solution have been investigated by cyclic voltammetry (CV), and excellent electrocatalytic activity was observed. This may be attributed to the small particle size of the silver particles. The results imply that the Ag/MWNT composites have a good application potential in fuel cells.  相似文献   

20.
Tzong-Ming Wu  Yen-Wen Lin 《Polymer》2006,47(10):3576-3582
This study reports the synthesis of doped polyaniline in its emeraldine salt form (PANI-ES) with carboxylic acid and acylchloride groups contained multi-walled carbon nanotubes (designated as c-MWNTs and a-MWNTs) by in situ polymerization. Both Raman spectra and HRTEM images indicate that carboxylic acid and acylchloride groups formed at both ends and on the sidewalls of the MWNTs. Based on the π-π* electron interaction between aniline monomers and functionalized MWNT and hydrogen bonding interaction between the amino groups of aniline monomers and the carboxylic acid/acylchloride groups of functionalized MWNT, aniline molecules were adsorbed and polymerized on the surface of MWNTs. Structural analysis by FESEM and HRTEM showed that PANI-ES/c-MWNT and PANI-ES/a-MWNT composites are core (c-MWNT or a-MWNT)- shell (doped-PANI-ES) tubular structures with diameters of several tens to hundreds of nanometers, depending on the PANI content. The conductivities of 0.5 wt% functionalized MWNT containing PANI-ES/c-MWNT and PANI-ES/a-MWNT composites are 60-70% higher than that of PANI without MWNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号