首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
以聚乙烯醇(PVA)为原料、去离子水为溶剂,通过静电纺丝制备PVA纳米纤维膜,利用正交实验探讨静电纺丝过程中纺丝液PVA浓度、纺丝距离、纺丝电压和注射速度对PVA纳米纤维膜形貌及纤维直径的影响,得出制备纤维膜的较佳工艺条件,并分析了纺丝液PVA浓度对纤维膜的力学性能和亲水性能的影响。结果表明:随着纺丝液PVA浓度的增加,PVA纤维的直径逐步变小,直径分布变窄;当纺丝液PVA质量分数为7%、纺丝电压为14 kV、纺丝距离为14 cm、注射速度为0.5 mL/h时,纤维膜的纤维直径最小,为203 nm;正交实验中PVA浓度、纺丝电压、纺丝距离、注射速度4个因素的极差值分别为87.00,49.67,18.33,11.67;纺丝液PVA质量分数从5%增加到7%,纤维膜的断裂强度从2.21 MPa提高至2.81 MPa,断裂伸长率从31.63%提高至56.39%,水接触角从37.7°提高至48.7°。  相似文献   

2.
《合成纤维工业》2016,(3):45-47
以聚乙烯醇(PVA)为原料,以芦丁为改性剂,将PVA与芦丁共混于去离子水中,通过静电纺丝制备抗紫外PVA/芦丁纳米纤维膜,并对其性能进行表征。结果表明:静电纺丝工艺条件为电压20 k V,纺丝速度0.5 m L/h,接收距离10 cm,温度30℃;加入少量芦丁,对PVA静电纺丝成纤性无影响,但纤维直径增大,直径均匀性变差;纤维中PVA与芦丁之间存在氢键;相对PVA,芦丁质量分数为4.76%时,PVA/芦丁纳米纤维膜的纤维平均直径为302 nm,抗紫外系数大于40,具有良好的抗紫外性能。  相似文献   

3.
《合成纤维》2017,(5):36-39
以废旧涤棉混纺面料为原料,采用化学法对含棉成分进行溶解回收,将得到的纤维素粉末与聚乙烯醇(PVA)、Na Cl配成纺丝液,通过静电纺丝法制备出PVA-纤维素纳米纤维膜。对所纺纤维进行电镜观察,分析静电压、纤维素与PVA质量比、纺丝液中溶质质量分数对纺丝效果的影响。结果表明:随着电压增大,纤维直径先下降后上升;随着纤维素含量的增加,纤维直径逐渐变小;随着溶液浓度的升高,纤维直径逐渐变大。  相似文献   

4.
将聚乙二醇(PEG)与聚乙烯醇(PVA)溶液混合,加入丁烷四羧酸(BTCA)作为交联剂配制纺丝原液,采用干法纺丝制得BTCA改性PEG/PVA相变储能纤维;研究了BTCA含量、热处理条件对交联程度的影响,并对纤维的结构、形态、储能性能及力学性能进行了分析。结果表明:在热处理温度为180℃,热处理时间为12 min时,纤维可达到良好的交联效果,纤维的交联程度随BTCA含量的增加呈上升趋势,BTCA质量分数为3%时达到平衡;改性纤维中PEG以独立微相区形式存在,而经热处理后可保留在交联网络中;热处理后的改性纤维力学性能随BTCA含量增加而提高,储能性能也增加且稳定;当BTCA质量分数为6%时,热处理后的纤维断裂强度达3.49 cN/dtex,再经沸水处理后纤维相变焓值可达23.01 J/g,PEG保留率达80%。  相似文献   

5.
利用无针头电极丝式静电纺丝机制备聚酰胺(PA6)纳米纤维膜材料。研究了静电纺工艺条件对PA6纳米纤维膜形貌及直径的影响,探讨了纤维膜力学性能与直径的关系。结果表明,电极丝静电纺丝装置能高效制备光滑、连续、均匀的纳米纤维膜;纤维直径与纺丝液质量分数呈正比关系,质量分数在12%左右时静电纺丝效果最好;当电压为70 k V时,纤维直径最小且分布较集中;接收距离的增加改善纤维直径的均匀性;直径的减小提高膜断裂强度的同时也降低伸长率。  相似文献   

6.
《合成纤维工业》2016,(6):20-25
采用经硅烷偶联剂KH570表面修饰的纳米SiO_2(KH570-SiO_2)对三聚氰胺甲醛/聚乙烯醇(MF/PVA)浆液进行改性,采用湿法纺丝并改变凝固浴温度制得了KH570-SiO_2改性MF/PVA纤维,采用旋转黏度计分析对比了KH570-SiO_2改性前后纺丝浆液的黏度变化,研究了KH570-SiO_2及凝固浴温度对MF/PVA纤维结构与性能的影响。结果表明:KH570-SiO_2改性后MF/PVA浆液的稳定性有所提高,KH570-SiO_2改性后MF/PVA纤维的断裂强度有所下降,但纤维韧性有较大提高,纤维耐热性能和阻燃性能也有较大提高;随着凝固浴温度的升高,KH570-SiO_2改性MF/PVA纤维的特征热分解温度和极限氧指数(LOI)先增大后降低,纤维LOI均高于28%;纤维断裂强度随凝固浴温度的升高而增大,而纤维断裂韧性则呈现先降低后增大趋势;凝固浴温度为50℃时,制得的KH570-SiO_2改性MF/PVA纤维LOI为38.7%,纤维断裂强度和断裂伸长率分别为2.53 c N/dtex和5.17%。  相似文献   

7.
以98%的甲酸为溶剂,不同质量分数的再生丝素溶液和3.5%的壳聚糖溶液以质量比70:30共混静电纺丝。用扫描电子显微镜(SEM)观察了丝素质量分数、电压和极距(喷丝口到收集装置的距离)对丝素/壳聚糖纳米纤维的形貌及直径的影响。正交试验结果表明:在丝素/壳聚糖溶液静电纺丝的工艺参数中,对纤维平均直径的影响因素由大到小依次为丝素质量分数、电压、极距。单因素试验表明:丝素/壳聚糖纳米纤维的平均直径及其分布范围随丝素质量分数的增加而增大;在15 ̄30kV范围内纤维的平均直径随电压增大而减小;当极距大于12cm时,对纤维直径影响不大。最佳工艺条件为:丝素质量分数13%,电压30kV,极距为12cm,制得的纳米纤维平均直径104nm。  相似文献   

8.
研究了热处理温度、时间及处理介质对并列复合双组分聚酯长丝的卷曲性能和力学性能的影响,结果表明:热处理温度对长丝的卷曲性能影响较大,卷曲率和卷曲回复率都随温度升高而增大,卷曲弹性率随温度升高而减小;热处理时间对长丝的力学性能影响不大;随着处理温度的增加,长丝的断裂强度、模量和取向因子略有下降,但是变化值并不大;不同的处理介质对长丝的力学性能影响较大。  相似文献   

9.
采用热烘处理方法,研究了聚苯硫醚(PPS)长丝在不同温度条件下的热稳定性能及力学性能。结果表明:PPS长丝在热处理过程中的失重率随温度的提高和时间的延长而增加;断裂伸长率随热处理温度的提高而下降;在80℃恒温下断裂强度几乎不随时间变化,120℃或180℃恒温下断裂强度随热处理时间的延长先增加后减小,但变化不大;当温度为250℃时,断裂强度随热处理时间显著下降;PPS纤维180℃以下性能稳定。  相似文献   

10.
采用静电纺丝技术制备碳纳米管-聚丙烯腈(CNT-PAN)复合纳米纤维膜,以期利用CNT增强PAN纳米纤维的力学性能和染料吸附性能。通过扫描电子显微镜、物理吸附仪和电子万能试验机等对不同CNT含量的复合纤维膜的微观结构、孔隙率、比表面积以及力学性能进行了表征分析。以亚甲基蓝为模板分子研究了不同条件下纳米纤维膜对染料的吸附效果。结果表明,随着CNT含量的增加,纳米纤维的直径略微增大,膜孔隙率和孔径变化不大。CNT的加入明显提高了PAN的力学性能和对染料的吸附性能,CNT的质量分数为10%时CNT-PAN复合纳米纤维膜的性能最佳,与纯PAN纤维膜相比,断裂强度提高了152%,染料吸附率提高了将近30%。  相似文献   

11.
采用静电纺丝技术制备了聚乙烯吡咯烷酮/二苯基丙氨酸(PVP/FF)复合纳米纤维;考察了FF含量、纺丝液流速对电纺纤维形貌及其平均直径的影响;利用扫描电镜对纤维表面形态进行了观察,通过X射线衍射和热重分析考察了纳米纤维中FF的存在状态及纳米纤维的热稳定性;通过全反射红外光谱分析了FF与PVP之间的相互作用。结果表明:当复合纤维中FF质量分数小于2%时,共混溶液的可纺性较好;复合纳米纤维直径随着FF含量的增大而先减小后增加,当FF的质量分数增加到5%时,复合纳米纤维的直径也相应增大;随着纺丝液流速的增大,复合纳米纤维的直径有逐渐增大的趋势,当纺丝液流速在0.2~0.6mL/h时,复合纳米纤维形貌较佳,纤维直径分布均匀,表面光滑无颗粒;PVP/FF复合纳米纤维中FF与PVP发生复合作用处于分散的无定形状态,分解温度范围变宽;FF与PVP之间具有良好的相容性。  相似文献   

12.
Polyvinyl alcohol (PVA) fibers were prepared using PVA with different degree of polymerization (DP) under the same wet spinning process. The effect of the DP of PVA on the structures and properties of PVA and PVA fibers were studied by using nuclear magnetic resonance hydrogen spectroscopy (1H-NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimeter (DSC), thermo gravimetric analysis (TGA), and environmental scanning electron microscope (ESEM). The results showed that DP had little effect on the crystallinity and tacticity of PVA, but had a positive effect on melting temperature, and initial decomposition temperature of PVAs. The hot drawing ratio determined by the spinning process where the PVA fibers could be continuously collected without breaking. The drawing ratio was decreased with an increase of DP, resulting in an increase of the final fiber diameter. The PVA fibers with medium DP and medium size demonstrated high strength and high modulus, but relatively low breaking elongation. It suggested that high DP of PVA was not a guarantee of high strength and high modulus PVA fibers, but rather a primary structure factor. The fiber performance was determined by a comprehensive effect combining a variety of factors including polymer properties and spinning conditions. It provided a guideline for PVA fiber manufacture that the PVAs with different DP require different spinning processes to obtain optimal fiber performance.  相似文献   

13.
A simple and nonconventional electrospinning technique was employed for producing aligned polyacrylonitrile (PAN) nanofibers. A thermal zone was placed between syringe needles and collector in the electrospinning set up to obtain aligned and heat treated nanofibers. Suitable temperatures for heat treat process of PAN nanofibers was determined using differential scanning spectroscopy (DSC) technique. The influence of treatment temperature was investigated on morphology, internal structure and mechanical properties of collected PAN nanofibers. The average fiber diameter measured from SEM images exhibited decreasing trend at higher temperatures. FTIR spectra indicated no considerable difference between chemical structure of untreated and treated PAN nanofibers. Crystallization degree of PAN nanofibers calculated from WAXD patterns showed relatively low change with treatment temperature. Tenacity values of nanofiber bundles increased with increasing temperature while the extension values had an inverse trend. However, the modulus did not show a regular manner, but treated nanofibers had more modulus than untreated ones. The stress and modulus of PAN nanofibers increased to 112.9 MPa and 7.25 GPa at 270°C, respectively. Nanofibers treated at the highest temperature had the largest amount of crystallinity and strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The focus of this work is the study of the dispersion mechanism of soybean stock‐based nanofibers in a plastic matrix. The cellulose nanofibers were extracted from soybean stock by chemo‐mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 and 100 nm and lengths of thousands of nanometers. These nanofibers were characterized by atomic force microscopy and transmission electron microscopy. X‐ray diffraction studies showed that the soybean stock nanofibers had a relative percentage crystallinity of about 48%. Selective chemical treatments increased the cellulose content of soybean stock nanofibers from 41 to 61%. The matrix polymers used in this project were poly(vinyl alcohol) (PVA) and polyethylene (PE). The mechanical properties of nanofiber‐reinforced PVA film demonstrated a 4‐ to 5‐fold increase in tensile strength, as compared to the untreated fiber‐blend‐PVA film. One of the problems encountered in the use of nanoreinforcements lies in the difficulty in ensuring good dispersion of the filler in the composite material. Improved dispersion level of nanofibers within a thermoplastic was achieved by adding ethylene‐acrylic oligomer emulsion as a dispersant. In the solid phase of nanofiber‐blend‐PE composites, the compression‐molded samples showed that improved mechanical properties were achieved with coated nanofibers. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
《合成纤维》2017,(5):28-32
通过静电纺丝制备聚丙烯酸(PAA)纳米纤维膜,并以乙二醇(EG)为交联剂、硫酸(H_2SO_4)为引发剂,对制备的PAA纳米纤维膜进行热交联,以提高其在水中的稳定性。采用扫描电子显微镜对纤维的表面形貌进行表征,发现当PAA溶液质量分数为9%、交联剂EG质量分数为12%、纺丝电压为20 k V时,溶剂挥发完全,而且纤维直径分布均匀。试验还对交联温度及交联时间进行了研究,发现PAA纳米纤维膜在140℃的热处理条件下形成酯,而在150℃及以上的热处理条件下形成酯和酸酐,且上述交联反应都能在1 h内完成。  相似文献   

16.
The electrospinning of the biopolymer chitosan (CS) and poly(vinyl alcohol) (PVA) was investigated with 90% acetic acid as the solvent and with different CS/PVA ratios. The long chains of high‐molecular‐weight CS prevented it from forming nanofibers in a high‐voltage field. The treatment of CS under high‐temperature alkali conditions reduced its molecular weight exponentially with the treatment time and caused a reduction of the viscosity consequently. PVA, acting as a plasticizer and accompanied by the alkali‐treated CS of lower viscosity, made the electrospinning of CS/PVA blends possible. The effects of the duration of the alkali treatment on the molecular weight of CS and its viscosity were investigated and optimized. The diameter of the bicomponent nanofiber decreased proportionally with the increase in the CS portion, whereas the surface porosity increased inversely. Fourier transform infrared studies illustrated that the alkali treatment or blending of CS with PVA had no effect on its chemical nature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
采用静电纺丝技术,以特殊设计的金属丝螺旋盘绕滚筒作为接收装置,制备了具有一定取向的丝素蛋白(SF)-聚乙烯醇(PVA)共混纳米纤维材料。利用扫描电子显微镜(SEM)对纤维形貌进行观察,并通过Image-Pro Plus软件对纤维细度进行测试,探讨了SF与PVA的配比以及纺丝电压、接收距离等静电纺丝参数对所得纳米纤维形貌、细度及其分布的影响。结果表明:将质量浓度为25 kg/L的SF与质量分数为8%的PVA以质量比15∶3.2共混,并采用20 kV的纺丝电压和13 cm的接收距离静电纺时,所得纳米纤维的平均直径约为238 nm,且直径分布较为均匀。采用该法制得的纳米纤维材料具有一定的纤维取向,有利于细胞生长,可应用于生物医药领域。  相似文献   

18.
In this study, a biocompatible nanofiber is fabricated using Plantago ovata mucilage (POM) combined with polyvinyl alcohol (PVA), which is considered as a non-toxic polymer. High quality nanofibers were produced by controlling the electrospinning parameters after selecting an appropriate solvent for the POM/PVA combination (12% PVA and 3% POM). Electrospinning parameters, including high voltage, distance from collector to tip, feed rate and POM to PVA proportion were optimized following preparation of an aqueous POM/PVA solution. Using the results of scanning electron microscopy, the optimized electrospinning conditions for producing POM/PVA nanofibers were determined (high voltage = 18 kV, distance = 15 cm, feed rate = 0.125 ml/hr, PMM/PVA = 50/50) and uniform nanofibers with an average diameter of 250 nm were produced. The POM/PVA nanofiber sample was evaluated by determining the mechanical strength, characterization of produced nanofiber morphology, and investigating the cell viability by applying MTT assay. The bands for both POM and PVA from FTIR results showed that the samples remained stable. The tensile strength results showed that blending POM with PVA solution enhanced the Young's modulus by factor of 3.2 (0.2 MPa to 0.64 MPa). The MTT analysis on POM/PVA cell lines proved that the produced nanofiber considerably enabled the cellular proliferation. Enhancement in these analysis indicated how POM-based nanofibers is a promising scaffold for cell culture, drug delivery systems and food additives.  相似文献   

19.
This article is a portion of a comprehensive study on carbon nanofiber–reinforced thermoplastic composites. The thermal behavior and dynamic and tensile mechanical properties of polypropylene–carbon nanofibers composites are discussed. Carbon nanofibers are those produced by the vapor‐grown carbon method and have an average diameter of 100 nm. These hollow‐core nanofibers are an ideal precursor system to working with multiwall and single‐wall nanotubes for composite development. Composites were prepared by conventional Banbury‐type plastic‐processing methods ideal for low‐cost composite development. Nanofiber agglomerates were eliminated because of shear working conditions, resulting in isotropic compression‐molded composites. Incorporation of carbon nanofibers raised the working temperature range of the thermoplastic by 100°C. The nanofiber additions led to an increase in the rate of polymer crystallization with no change in the nucleation mechanism, as analyzed by the Avrami method. Although the tensile strength of the composite was unaltered with increasing nanofiber composition, the dynamic modulus increased by 350%. The thermal behavior of the composites was not significantly altered by the functionalization of the nanofibers since chemical alteration is associated with the defect structure of the chemical vapor deposition (CVD) layer on the nanofibers. Composite strength was limited by the enhanced crystallization of the polymer brought on by nanofiber interaction as additional nucleation sites. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 125–133, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号