首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
High transparency Nd: Y2O3 ceramics were prepared by vacuum sintering with La2O3 and ZrO2 sintering additives. The optimum in‐line transmittance of the sintered Nd: Y2O3 is 80.98% at the wavelength of 1100 nm, for which the content of La2O3 and ZrO2 are 10.0 and 3.0 at.%, respectively. This specimen demonstrates homogeneous microstructure with the average grain size of 8.3 μm. The mechanism of sintering with La2O3 and ZrO2 aids and the optical properties was discussed. The absorption, emission cross section, and fluorescence lifetime have been estimated as 1.62 × 10?20 cm2, 5.13 × 10?20 cm2, and 232 μs, respectively. Vickers hardness and the fracture toughness were measured of 9.18 GPa and 1.03 Mpa·m1/2, respectively. All the results indicate that Nd: Y2O3 transparent ceramic is a promising candidate for laser material.  相似文献   

2.
《Ceramics International》2023,49(7):10625-10633
Infrared transparent Ho: Y2O3-MgO nanocomposite ceramics with a volume ratio of 50:50 (RE2O3: MgO) were prepared by combining sol-gel powder synthesis and hot-pressing sintering techniques. In order to obtain Ho: Y2O3-MgO nanocomposite ceramics with fine grain size, dense microstructure and homogeneous phase domains, the effect of sintering temperature and Ho3+ doping concentration were studied. Transmittance and SEM measurement revealed that the grain size of 3 at.% Ho: Y2O3-MgO ceramic sintered at 1250 °C is 141 nm, and the transmission is up to 85.2% at 5 μm. The detailed spectroscopic investigation of x at.% Ho: Y2O3-MgO (x = 1, 3, 5, 7, 9, 15) ceramics was performed. The nanocomposites exhibited photoluminescence properties similar to that of Ho: Y2O3 crystals and ceramics. In addition, the thermal conductivity of 3 at.% Ho: Y2O3-MgO ceramic is 13.04 W/m·K, which is superior to that of Ho:Y2O3 ceramics. The high transmission, excellent thermal conductivity, and outstanding optical characteristics indicated that Ho: Y2O3-MgO ceramics is a promising material for efficient infrared solid-state laser.  相似文献   

3.
Composite YAG/Nd:LuAG transparent ceramics were fabricated by a thermal bonding process. The spatial distribution of ions around the original bonding interface of the YAG/Nd:LuAG composite laser ceramic was investigated. Around the original bonding interface, Lu3+ and Y3+ ions were replaced with each other in dodecahedral symmetry sites. Results from X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) quantitative chemical analyses positively show that the distance of Y3+ ions diffused in the LuAG part is about 35 μm, while Lu3+ ions’ diffused distance in the YAG part is about 5 μm. This corresponds to the diffusion coefficient of Y3+ ions and Lu3+ ions (DY=2.43 ×10?10 cm2/s and DLu=0.56×10?10 cm2/s at 1750°C). The formation of YxLu(3?x)Al5O12 polycrystal in the bonding section explains the complete combination of LuAG and YAG without a bonding interface. Moreover, no diffusion phenomenon of Nd3+ ions was detected near the original bonding interface.  相似文献   

4.
The intrinsic microstructure and crystalline phases of porous SiC ceramics with 5 vol% AlN–RE2O3 (RE = Sc, Y, Lu) additives were characterized by high-resolution transmission microscopy with energy-dispersive spectroscopy and X-ray diffraction. The homophase (SiC/SiC) and heterophase (SiC/junction) boundaries were found to be clean; that is, amorphous films were not observed in the specimens. In addition, ScN, YN, and LuN were formed as secondary phases. The flexural strength and thermal conductivity of the ceramics were successfully tuned using different additive compositions. The flexural strength of the ceramics improved by a factor of ~3, from 11.7 MPa for the specimen containing Y2O3 to 34.2 MPa for that containing Sc2O3, owing to the formation of a wide necking area between SiC grains. For the same reason, the thermal conductivity improved by ~56%, from 9.2 W·m?1·K?1 for the specimen containing Lu2O3 to 14.4 W·m?1·K?1 for that containing Sc2O3.  相似文献   

5.
Polycrystalline Mo4Y2Al3B6 ceramic (92.84 wt% Mo4Y2Al3B6 and 7.16 wt% MoB) was prepared by spark plasma sintering at 1250 ℃ under 30 MPa using Mo, Y, Al, and B as starting materials. The dense sample obtained has a high relative density of 96.6 %. The average thermal expansion coefficient is 8.38 × 10?6 K?1 in the range of 25–1000 ℃. The thermal diffusivity decreases from 6.50 mm2/s at 25 °C to 4.33 mm2/s at 800 °C. The heat capacity, thermal conductivity, and electrical conductivity are 0.30 J·g?1·K?1, 11.73 W·m?1·K?1, and 0.66 × 106 Ω?1·m?1 at 25 °C, respectively. Vickers hardness with increasing load in the range of 10–300 N at room temperature decreases from 10.82 to 9.49 GPa, and the fracture toughness, compressive strength, and flexural strength are 5.14 MPa·m1/2, 1255.14 MPa, and 384.82 MPa, respectively, showing the promising applications as structural-functional ceramics.  相似文献   

6.
《Ceramics International》2023,49(1):101-108
2 at.% Tm, xat.% Dy:Y2O3 (x = 0, 0.1, 0.5 and 1) transparent ceramics were fabricated via vacuum sintering. The microstructural properties of the prepared ceramics were determined using XRD and SEM. The absorption cross-section of 2 at.% Tm, 1 at.% Dy:Y2O3 ceramic was 0.53 × 10?20 cm2 with the FWHM of 43.59 nm. The increased cross-section originates from a large overlapping range appearing in the absorption spectrum of the Dy3+:6H15/2 → 6F5/2 and Tm3+:3H66H4 transitions. The J-O intensity parameters Ω2, Ω4 and Ω6 and the fluorescence characteristics of the pivotal luminescent level of the Dy3+ ions were investigated. Under 793 nm excitation, the emission cross section of the Tm,Dy:Y2O3 ceramic at 3094 nm was 3.63 × 10?21 cm2 with the FWHM of 355 nm. The fluorescence lifetimes of Dy3+:6H13/2 level of 2 at.% Tm, xat.% Dy:Y2O3 (x = 0.1, 0.5 and 1) ceramics were fitted to be 357 μs, 282 μs and 149 μs, respectively. In order to explore the quenching mechanism of Tm3+:3F4 level, the fluorescence lifetimes of Tm3+:3F4 of the 2 at.% Tm, xat.% Dy:Y2O3 ceramics (x = 0, 0.1, 0.5 and 1) were measured to be 4.878 ms, 462 μs, 104 μs and 61 μs, respectively. The possible energy transfer mechanisms between Tm3+ and Dy3+ ions are discussed. The results show that adding Tm3+ ions to Dy:Y2O3 ceramics can effectively enhance the 2.9 μm MIR through energy transfer.  相似文献   

7.
Transparent Y2O3 ceramics were fabricated by solid-state reaction using high purity Y2O3 and ZrO2 powder as starting material. The results indicated that ZrO2 additive can improve the transparency of Y2O3 ceramic greatly. The best transmittance appears with 3 at.% ZrO2 doped Y2O3 transparent ceramic with transmittance at 1100 nm of 83.1%, which is up to 98.6% of the theoretical value. The microstructure is uniform and no secondary phase is observed in the ceramic with the average grain size of 15 μm. The mechanism of ZrO2 improving the transparency of Y2O3 ceramic is analyzed in detail. On this basis, Yb3+ doped Y2O3 transparent ceramic was also fabricated and spectroscopic properties were investigated.  相似文献   

8.
《Ceramics International》2023,49(5):7842-7852
Thermal barrier coatings with excellent thermal performance and corrosion resistance are essential for improving the performance of aero-engines. In this paper, (Y3-xYbx)(Al5-xScx)O12 (x = 0, 0.1, 0.2, 0.3) thermal barrier coating materials were synthesized by a combination of sol-gel method and ball milling refinement method. The thermal properties of the (Y3-xYbx)(Al5-xScx)O12 ceramics were significantly improved by increasing Yb and Sc doping content. Among designed ceramics, (Y2.8Yb0.2)(Al4.8Sc0.2)O12 (YS-YAG) showed the lowest thermal conductivity (1.58 Wm?1K?1, at 800 °C) and the highest thermal expansion coefficient (10.7 × 10?6 K?1, at 1000 °C). In addition, calcium-magnesium- aluminum -silicate (CMAS) corrosion resistance of YS-YAG was further investigated. It was observed that YS-YAG ceramic effectively prevented CMAS corrosion due to its chemical inertness to CMAS as well as its unique and complex structure. Due to the excellent thermal properties and CMAS corrosion resistance, YS-YAG is considered to be prospective material for thermal barrier coatings.  相似文献   

9.
Foam‐gelcasting‐freeze drying method is developed to fabricate porous Y2SiO5 ceramic with ultrahigh porosity of 92.2%‐95.8% and isotropous multiple pore structures. As prepared porous samples have quite low shrinkages of 0.8%‐1.9% during demolding and drying processes, lightweights of 0.19‐0.35 g/cm3, and extremely low thermal conductivities of 0.054‐0.089 W·(m·K)?1. Our approach combines the merits of foam‐gelcasting method and freeze drying method. It is a simple and effective method to fabricate porous ceramics with very high porosity and extremely low thermal conductivity through low shrinkage of green body and near net complex shape forming.  相似文献   

10.
The effect of rare-earth oxide addition (1–5 mass% of Ln2O3 addition; Ln=Y, La, Nd, Sm, Gd, Dy, Er, and Yb) on the properties of hot-pressed (1550 °C, 90 min, 31 MPa) magnesium silicon nitride (MgSiN2) compact (ceramic) has been investigated. The role of rare-earth oxide addition on the relative density was classified as follows: (i) positive effect (Y2O3, La2O3, and Yb2O3 addition), (ii) no appreciable effect (Nd2O3 and Er2O3 addition), and (iii) negative effect (Sm2O3, Gd2O3, and Dy2O3 addition). The grain sizes of the MgSiN2 ceramics with rare-earth oxide addition were almost comparable to or slightly smaller than those of the pure MgSiN2 ceramic. The average Vickers hardness of the MgSiN2 ceramic with 1 mass% of Y2O3 addition showed the highest value (21.5 GPa) amongst the MgSiN2 ceramics with rare-earth oxide addition. The thermal conductivity of the MgSiN2 ceramic had a maximum for the case of 1 mass% of Yb2O3 addition (26.6 W·m−1·K−1) and was believed to be the highest value so far reported for MgSiN2 ceramic. It was concluded that the relative density and Vickers hardness were best enhanced through the use of Y2O3 addition, whereas the addition of Yb2O3 was most suitable for enhancing the thermal conductivity.  相似文献   

11.
《Ceramics International》2023,49(6):9052-9059
A novel (Sm0.2Lu0.2Dy0.2Yb0.2Y0.2)3TaO7 (SLT-5RE0.2) oxide with a single-fluorite structure was synthesized via an optimized sol-gel and sintering method, and its crystal structure, mechanical and thermophysical properties were investigated. The results indicate that the calcined nanoscale powder is of high crystallinity, and bulk sample is of a uniform elemental distribution. Compared to YSZ (6–8 wt.% Y2O3 partially stabilized by ZrO2), SLT-5RE0.2 exhibits lower Young's modulus, less mean acoustic velocity, and higher Vickers microhardness. Owing to the strengthened anharmonic vibration and phonon scattering, SLT-5RE0.2 exhibits low thermal conductivity (1.107 W K?1·m?1, 900 °C). The high thermal expansion coefficient (11.3 × 10?6 K?1, 1200 °C) of SLT-5RE0.2 ceramic can be ascribed to the reduced lattice energy and ionic spacing as well as the cocktail effect of high-entropy ceramics. The excellent mechanical and thermophysical properties, and excellent phase steadiness during the whole testing temperature cope, indicate that SLT-5RE0.2 high-entropy ceramic can be a candidate material for thermal barrier coatings.  相似文献   

12.
The electrical and thermal properties of SiC ceramics containing 1 vol% nitrides (BN, AlN or TiN) were investigated with 2 vol% Y2O3 addition as a sintering additive. The AlN‐added SiC specimen exhibited an electrical resistivity (3.8 × 101 Ω·cm) that is larger by a factor of ~102 compared to that (1.3 × 10?1 Ω·cm) of a baseline specimen sintered with Y2O3 only. On the other hand, BN‐ or TiN‐added SiC specimens exhibited resistivity that is lower than that of the baseline specimen by a factor of 10?1. The addition of 1 vol% BN or AlN led to a decrease in the thermal conductivity of SiC from 178 W/m·K (baseline) to 99 W/m·K or 133 W/m·K, respectively. The electrical resistivity and thermal conductivity of the TiN‐added SiC specimen were 1.6 × 10?2 Ω·cm and 211 W/m·K at room temperature, respectively. The present results suggest that the electrical and thermal properties of SiC ceramics are controllable by adding a small amount of nitrides.  相似文献   

13.
In this article, isocyanate was adopted to modify Y2O3 powder for the purpose of preparing transparent Y2O3 ceramics via gel casting. The modification could enhance the hydration resistance of Y2O3 powder through the steric hindrance effect. The coating mechanism can be proved by the infrared spectrum of the surface-modified Y2O3 powder. Modification could not only prevent Y2O3 particles from reacting with water, but also prevents agglomeration between particles. The viscosity of the slurry with a solid content of 52.7 vol% is only 0.48 Pa·s at the shear rate of 100 s−1, which is suitable for preparing high-density compacts by gel casting. The transmittance of the sample (1840°C × 8 h, 1 mm thickness) at 1100 nm reaches 75%. The microstructure of the sintered body is dense with the average grain size of 6.5 μm without obvious impurities nor pores. Five mol% ZrO2-doped Y2O3 transparent ceramic fairing with the diameter of 5 cm without defects was successfully fabricated by gel casting (52.7 vol% solid volume) and vacuum sintering (1840°C × 8 h).  相似文献   

14.
Tetravalent chromium‐doped Y3Al5O12 ceramics were fabricated by solid‐state reactive sintering method using high‐purity Y2O3, α‐ Al2O3, and Cr2O3 powders as the starting materials. CaO and MgO were co‐doped as the sintering aids. The effects of TEOS and divalent dopants (CaO and MgO) on the optical qualities, the conversion efficiency of Cr4+ ions, and the microstructure evolutions of 0.1 at.% Cr4+: YAG ceramics were investigated. Fully dense, dark brown colored Cr4+: YAG ceramics with an average grain size of 3.1 μm were achieved. The in‐line transmittance of the as‐prepared ceramic at 2000 nm was 85.3% (4 mm thick), and the absorption coefficient at 1030 nm (the characteristic absorption peak of Cr4+ ions) was as high as 3.7 cm?1, which was higher than that of corresponding single crystals fabricated by Czochralski method.  相似文献   

15.
《Ceramics International》2023,49(2):2394-2400
It is well known that aqueous gel-casting is challenging to prepare high-porosity ceramics due to the considerable drying shrinkage, cracking, and deformation of green bodies during drying caused by the high surface tension of water. Porous Y2SiO5 ceramics with high porosity were prepared by introducing carbon fibers as a support material in the drying process of aqueous gel-casting to reduce shrinkage during drying. Burning out the carbon fibers after drying does not negatively affect the properties of the porous ceramic. As prepared green bodies by aqueous gel-casting have low shrinkages of 8.69%–6.81% during drying processes and high compressive strength of 13.73 ± 1.55–10.66~0.49 MPa. The higher compressive strength of the green body has a positive significance for processing porous ceramics into special-shaped structures. As prepared porous Y2SiO5 ceramics have high porosity of 73.94%–87.71%, lightweights of 1.16–0.55 g?cm3, extremely low thermal conductivities of 0.134 ± 0.006 to 0.051 ± 0.001 W?m?1?k?1, relatively low dielectric constants of 2.34–1.58, and tan δ are lower than 1.25 × 10?3. Porous Y2SiO5 ceramics with excellent dielectric properties and thermal insulation properties meet the requirements of thermal insulation and wave transmission integration of radome materials. Aqueous gel-casting also enriches the preparation methods of high-porosity Y2SiO5 ceramics.  相似文献   

16.
In this paper, the i-MAX phase (Mo2/3Y1/3)2AlC ceramic with high purity of 98.29 wt% (1.13 wt% Y2O3 and 0.58 wt% Mo2C) and high relative density of 98.59% was successfully synthesized by spark plasma sintering (SPS) at 1500°C with the molar ratio of n(Mo):n(Y):n(Al):n(C) = 4:2:3.3:2.7. The positions of C atoms in the crystal of (Mo2/3Y1/3)2AlC were determined. Microstructure and physical and mechanical properties of (Mo2/3Y1/3)2AlC ceramic were systematically investigated. It was found that the obtained (Mo2/3Y1/3)2AlC ceramic had an average grain size of 32.1 ± 3.1 μm in length and 14.2 ± 1.7 μm in width. In terms of physical properties, the measured thermal expansion coefficient (TEC) of (Mo2/3Y1/3)2AlC was 8.99 × 10−6 K−1, and the thermal capacity and thermal conductivity at room temperature were 0.43 J·g−1·K−1 and 13.75 W·m−1·K−1, respectively. The room temperature electrical conductivity of (Mo2/3Y1/3)2AlC ceramic was measured to be 1.25 × 106 Ω−1·m−1. In terms of mechanical properties, Vickers hardness under 10 N load was measured as 10.54 ± 0.29 GPa, while flexural strength, fracture toughness, and compressive strength were determined as 260.08 ± 14.18 MPa, 4.51 ± 0.70 MPa·m1/2, and 855 ± 62 MPa, respectively, indicating the promising structural applications.  相似文献   

17.
In this work, the effects of Y2O3/MgO ratio on the densification behavior, phase transformation, microstructure evolution, mechanical properties, and thermal conductivity of Si3N4 ceramics were investigated. Densified samples with bimodal microstructure could be obtained by adjusting the ratio of Y2O3/MgO. It was found that a low Y2O3/MgO ratio facilitated the densification of Si3N4 ceramics while a high Y2O3/MgO ratio benefited the phase transformation of Si3N4 ceramics. Best mechanical properties (flexural strength of 875 MPa, and fracture toughness of 8.25 MPa·m1/2, respectively) and optimal thermal conductivity of 98.04W/(m·K) were achieved in the sample fabricated with Y2O3/MgO ratio of 3:4 by sintering at 1900°C for 4 h.  相似文献   

18.
Here, we present a novel strategy to prepare laminated ceramics by combining the ceramic foams and hot-pressing sintering. Al2O3 and ZrO2 ceramic foams prepared by the particle-stabilized foaming method was cut into thin slices and then directly laminated and hot-pressing sintered. Al2O3/ZrO2 laminated ceramics with various structures were prepared. Compared with the slices prepared by conventional process, ceramic foams can easily regulate the thickness of laminate to resemble the nacre-like structure. In addition, the grain in the ceramic foams have lower activity and shrinkage rate, thereby weakening the residual tensile internal stress caused by grain coarsening and differences in coefficient of thermal expansion. The effects of layer number and thickness ratio on residual stress and the structure-activity relationship between mechanical properties and microstructure were investigated. The fracture toughness, flexural strength, and work of fracture of the optimal Al2O3/ZrO2 laminated ceramics are 8.2 ± 1.3 MPa·m1/2, 356 ± 59 MPa, and 216 J·m?2, respectively.  相似文献   

19.
In this study, we investigated the electrical and thermal properties of SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives. The three SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 additives showed electrical conductivities on the order of ~103 (Ω·m)?1, which is one order of magnitude higher than that of the SiC ceramics sintered with 2 vol% Y2O3 only. The increase in electrical conductivity is attributed to the growth of heavily nitrogen‐doped SiC grains during sintering and the confinement of oxide additives in the junction area. The thermal conductivities of the SiC ceramics were in the 176–198 W·(m·K)?1 range at room temperature. The new additive systems, equimolar Y2O3–RE2O3, are beneficial for achieving both high electrical conductivity and high thermal conductivity in SiC ceramics.  相似文献   

20.
《Ceramics International》2022,48(22):33003-33010
The effect of the solid loading (41–50 wt%) of the slurry on granulometric composition and physico-chemical characteristics of Y2O3–Al2O3–Nd2O3 powder mixtures obtained by planetary ball milling has been studied for the first time. It was shown that the particle size distribution of powder, its Zeta potential, and specific surface area depend on the solid loading of the milled slurry and, consequently, on the interparticle distance during milling. The interparticle distance decreases from 200 nm to 142 nm with an increase of solid loading in the range of 41–50 wt%. It was shown that for the solid loading of 47 wt%, the convergence of particles to a distance comparable to their median diameter promotes subsequent clustering of particles. This facilitates the sintering of highly-homogenous ceramics. It was found that solid loadings in the 46–50 wt% range is useful for obtaining high-quality Nd:YAG transparent ceramics. The lowest optical losses optical losses of 1 × 10?3 cm?1 and the highest in-line transmittance of 84.1%@1064 nm were obtained for 1 at.% Nd:YAG transparent ceramics (22 × 3 × 4 mm3) prepared from slurries with 47 wt% solid loading (taking all other ball milling parameters fixed). If the interparticle distance in the powder is higher (solid loading of 41 wt%) than the median particle diameter, the ceramics are characterized by significant residual porosity due to the survival of large particles (insufficient milling).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号