首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
Lithium garnet‐type oxides Li7?2xLa3Zr2?xMoxO12 (x=0, 0.1, 0.2, 0.3) ceramics were prepared by a sol‐gel method. The influence of molybdenum on the structure, microstructure and conductivity of Li7La3Zr2O12 were investigated by X‐ray diffraction, scanning electron microscopy, and impedance spectroscopy. The cubic phase Li7La3Zr2O12 has been stabilized by partial substitution of Mo for Zr at low temperature. The introduction of Mo (x≥0.1) can accelerate densification. Li6.6La3Zr1.8Mo0.2O12 sintered at lower temperature 1100°C for 3 hours exhibits highest total ionic conductivity of 5.09 × 10?4 S/cm. Results indicate that the Mo doping LLZO synthesized by sol‐gel method effectively lowers its sintering temperature and improves the ionic conductivity.  相似文献   

2.
Lanthanum hexaaluminate is a promising competitor to establish yttria partially stabilized zirconia as a thermal barrier coating material for Ni‐based superalloy due to its relative low intrinsic thermal conductivity and low sinterability at temperatures exceeding 1100°C. Sr2+ and Ti4+ were selected as two dopants to partially substitute the La3+ and Al3+ in LaMgAl11O19, respectively. The variation in thermal conductivity with Sr2+ and Ti4+ fractions was analyzed based on structure information provided by X‐ray diffraction and Raman spectroscopy. The average crystal size of LaMgAl11O19 sintered at 1600°C for 10 min by spark plasma sintering is in nanoscale. The fully dense La1?xSrxMgAl11?xTixO19 solid solution showed a minimum thermal conductivity value (λ = 1.12 W/(m K)?1,T = 1273 K) at the composition of La0.5Sr0.5MgAl10.5Ti0.5O19,which possibly reduces from the enhanced phonon scattering due to mass and strain fluctuations at the Ln3+ and B3+ sites.  相似文献   

3.
Thermal barrier coating materials with proper thermal expansion coefficient (TEC), low thermal conductivity, and good high-temperature stability are of great significance for their applications in next-generation turbine engines. Herein, we report a new class of high-entropy (La0.2Sm0.2Er0.2Yb0.2Y0.2)2CexO3+2x with different Ce4+ contents synthesized by a solid-state reaction method. They exhibit different crystal structures at different Ce4+ content, including a bixbyite single phase without Ce4+ doping (x = 0), bixbyite-fluorite dual-phase in the RE2O3-rich region (0 < x < 2), and fluorite single phase in the stoichiometric (x = 2) and CeO2-rich region (x > 2). The high-entropy (La0.2Sm0.2Er0.2Yb0.2Y0.2)2CexO3+2x exhibit tailorable TECs at a large range of 9.04 × 10–6–13.12 × 10–6 °C–1 and engineered low thermal conductivity of 1.79–2.63 W·m–1·K–1. They also possess good sintering resistance and high-temperature phase stability. These results reveal that the high-entropy (La0.2Sm0.2Er0.2Yb0.2Y0.2)2CexO3+2x are promising candidates for thermal barrier coating materials as well as thermally insulating materials and refractories.  相似文献   

4.
In the first part of this study, the characteristics of a La0.5Sr0.5CoO3?δ cathode are described, including its chemical bulk diffusion coefficient (Dchem), and electrical conductivity relaxation experiments are performed to obtain experimental Dchem measurements of this cathode. The second part of this study describes two methods to improve the single‐cell performance of solid oxide fuel cells. One method uses a composite cathode, i.e., a mix of 30 wt% electrolyte and 70 wt% cathode; the other method uses an electrolyte‐infiltrated cathode, i.e., an active ionic‐conductive electrolyte with nano‐sized particles is deposited onto a porous cathode surface using the infiltration method. In this work, 0.2M Ce0.8Sm0.2O1.9 (SDC)‐infiltrated La0.5Sr0.5CoO3?δ exhibits a maximum peak power density of 1221 mW/cm2 at an operating temperature of 700°C with a thick‐film SDC electrolyte (30 μm), a NiO + SDC anode (1 mm) and a La0.5Sr0.5CoO3?δ cathode (10 μm). The enhancement in electrochemical performances using the electrolyte‐infiltrated cathode is attributed to the creation of electrolyte/cathode phase boundaries, which considerably increases the number of electrochemical sites available for the oxygen reduction reaction.  相似文献   

5.
In this study, the influence of La content on the characteristics of Nb‐, Mo‐, and W‐doped LaxGe6O26±δ electrolytes was investigated through sintering study, X‐ray diffraction, scanning electron microscopy, and conductivity measurement. The densification of LaxGe5.5Nb0.5O26±δ and LaxGe5.5W0.5O26±δ was retarded as the x reached 9.75, while that of LaxGe5.5Mo0.5O26±δ improved with increasing La content. The average grain size slightly increased and weight loss due to evaporation of GeO2 significantly reduced with increasing La content, ranging from 1.39% to 0.26%. Among the systems studied, La9.33Ge5.5Nb0.5O26.245, La9.33Ge5.5Mo0.5O26.045, and La9.50Ge5.5W0.5O26.75 electrolytes revealed great potential for use in SOFC applications.  相似文献   

6.
The mixed ionic–electronic conductivity under dilute hydrogen, the stability and the catalytic activity under propane:air type mixtures of a series of LAMOX oxide‐ion conductors have been studied. The effect of exposure to dilute hydrogen on the conductivity of the β‐La2(Mo2 – yWy)O9 series at 600 °C depends on tungsten content: almost negligible for the highest (y = 1.4), it is important for La2Mo2O9 (y = 0). In propane:air, all tested LAMOX electrolytes are stable at 600–700 °C, but get reduced when water vapour is present. La2Mo2O9 is the best oxidation catalyst of the series, with an activity comparable to that of nickel. The catalytic activity of other tested LAMOX compounds is much lower, (La1.9Y0.1)Mo2O9 showing a deactivation phenomenon. These results suggest that depending on composition, La2(Mo2 – yWy)O9 compounds could be either electrolytes in single‐chamber SOFC and dual‐chamber micro‐SOFC (y = 1.4) or anode materials in dual‐chamber SOFC (low y) or oxidation catalysts in SOFCs operating with propane (y = 0).  相似文献   

7.
Ba-substituted La2Mo2O9 ((La1−xBax)2Mo2O9−δ, x = 0–0.12) was prepared and the thermal and mechanical properties were evaluated. The thermal expansion coefficients (TECs) were determined from high-temperature X-ray diffraction (XRD) analysis. Phase transition in La2Mo2O9 was suppressed via substitution of Ba for La, as demonstrated by differential scanning calorimetry (DSC) analysis. The mechanical properties, such as the bulk modulus, shear modulus, Young’s modulus, compressibility, and Debye temperature were evaluated from the measured sound velocities. The thermal conductivity was evaluated from the thermal diffusivity, heat capacity, and density in the temperature range from room temperature to 1073 K. The thermal conductivity decreased with increasing Ba content. Theoretical calculations based on the Klemens–Callaway model were performed to analyze the thermal conductivity, and the results suggest that the reduction of the thermal conductivity was mainly attributed to oxygen defects in the anion sublattice of La2Mo2O9.  相似文献   

8.
Dy3+–Tm3+ ions codoped SrMg2La2W2O12 (strontium magnesium lanthanum tungstate) phosphors were synthesized by conventional high‐temperature solid‐state reaction method. X‐ray analysis of the end products revealed the well‐crystallized phases with orthorhombic structure. The functional groups present in the phosphors were studied by the Fourier transform infrared measurements. To know the potential applicability of these phosphors for white light emission, the excitation and emission spectra were recorded. The excitation spectra exhibited an intense broad band at 313 nm, pertaining to the O → W ligand‐to‐metal charge‐transfer state (LMCT) of the host. With the excitation of LMCT band (313 nm), the decay curves of singly doped SrMg2La2W2O12:Dy phosphors exhibited single exponential, where as the codoped SrMg2La2W2O12:DyTm phosphors exhibited double exponential nature. The luminescence colors of these phosphors were estimated from Commission Internationale de L'Eclairage (CIE) coordinates using the photoluminescence data. The color of singly doped SrMg2La2W2O12:Dy phosphor has been tuned by codoping with Tm3+ ions. It has been noticed that the CIE chromaticity coordinates (x,y) determined from the luminescence spectrum of singly Dy3+ doped SrMg2La2W2O12 phosphor shifted toward the white light region, when codoped with Tm3+ ions. The increase in correlated color temperatures (Tcct) has been noticed with the increase of Tm3+ ions concentration in SrMg2La2W2O12:DyTm phosphors.  相似文献   

9.
Nonstoichiometry pyrochlore composites of Nd2?xZr2+xO7+x/2 (x = 0, 0.1, 0.2) were synthesized by chemical‐coprecipitation and calcination method. The phase structure evolution and thermo‐physical properties of Nd2?xZr2+xO7+x/2 were investigated. Structural analysis by Raman spectroscopy showed that Nd2?xZr2+xO7+x/2 underwent an ordering degree decrease and a lattice distortion increase with increasing x value. Nd1.9Zr2.1O7.05 and Nd1.8Zr2.2O7.1 exhibited lower thermal conductivities than Nd2Zr2O7, which might be related to the lower ordering degree and the enhanced phonon scattering due to lattice distortion. As ZrO2 content increasing, the thermal expansion coefficients of Nd2?xZr2+xO7+x/2 increased, which possibly arised from the decreased crystal energy due to reduced ordering degree.  相似文献   

10.
The local environments of Y in the Y‐substituted BaZrO3 of the starting compositions of Bax(Zr0.8Y0.2)O3?δ (x = 0.97, 1.0, 1.03, and 1.06) were analyzed by 89Y magic angle spinning NMR spectroscopy. The result showed a strong population dependence of 5‐coordinated Y3+ ions mostly at the B site on the Ba contents. The enhancement of Ba contents by 9 at% (from 0.97 to 1.06 in the starting Ba contents) in a nominal composition increased the amount of 5‐coordinated Y3+ ions from 35% ± 7% to 49% ± 5%, suggesting the importance of maximizing the Ba contents to populate more oxygen vacancies which is related to the concentration of protons incorporated during the hydration process. The wide variation in the lattice parameter of yttrium‐substituted BaZrO3 perovskite materials in previous reports was reinterpreted with the variation in the Ba contents resulting from the evaporation of BaO during the sintering processes. Y3+ ions were confirmed to replace mainly the Zr4+ ions, as expected, and a tendency of oxygen vacancy clustering near the Y3+ ions was discussed.  相似文献   

11.
A series of compounds La2Mo2−xWxO9 (x = 0-2) were synthesized using a freeze-dried precursor method at relatively low temperatures (673-823 K). These materials were characterised by thermogravimetric and differential thermal analysis (TG/DTA), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and dilatometric measurements. Oxygen stoichiometry was evaluated by coulometric titration and thermogravimetric analysis at 873-1273 K. The ionic and electronic conductivities of these materials were analysed by impedance spectroscopy and a Hebb-Wagner ion-blocking method under moderately reducing conditions. The presence of W6+ leads to an increase of the stability range (about 10−16 Pa for La2Mo0.5W1.5O9 at 1073 K) and prevents oxygen loss and amorphisation. Within the stability range, the electronic conductivity increases gradually as the temperature increases and as the oxygen partial pressure reduces. This indicates that the electronic transport is mainly n-type as a result of the oxygen-content decreasing in the molybdate lattice. Further reduction of the oxygen partial pressure gave rise to the decomposition of La2Mo2−xWxO9, leading to the formation of new phases with molybdenum in lower oxidation states, which further enhances the electronic conductivity. The results of the coulometric titration and the thermogravimetric studies under a dry 5% H2/Ar flow suggest that tungsten doped lanthanum molybdate materials can be used as electrolyte only at low temperature and under moderate reducing conditions.  相似文献   

12.
The heat capacity Cp, thermal diffusivity χT, and lattice thermal conductivity κlatt of ceramic solid solutions of sesquisulfides Gd3‐xVGd,xS4 (0 < x < 0.33) in the temperature range 300‐700 K has been studied. Changing the real structure, namely the concentrations of vacancies (NV) and deformation (NDc) centers of polycrystals, significantly decreases κlatt. A deviation of composition from the stoichiometry 2:3 is accompanied by an increase in the specific area of the crystallite boundaries per unit volume, and, hence, the concentration of deformation centers DC increases. This observation was confirmed by examining the short‐range order disturbance of the lattice and symmetry environment of the Gd3+ and S2? environment by Raman spectroscopy and the magnetic susceptibility Faraday method. Therefore the thermal diffusivity of gadolinium sesquisulfide is reduced because of the mean free path of phonons decrease. As a result, the thermal conductivity of the polycrystalline samples is reduced by 10%.  相似文献   

13.
Gd1?xLaxBaCuFeO5+δ polycrystalline ceramics have been prepared by a sol–gel method combined with the traditional ceramic processing. Analysis of the microstructure and phase composition reveals that the pure GdBaCuFeO5+δ phase can be obtained even after the substitution of 50% La at Gd‐site. The band gap can be tuned from 1.47 to 1.36 eV by La substitution, resulting in a significant increase in the electrical conductivity. In addition, the total thermal conductivity can also be suppressed by the substitution of La at Gd‐sites. A ZT value of 0.02 at 1023 K is achieved in the 50% La‐substituted samples, which is over 20 times higher than that of the pure GdBaCuFeO5+δ sample.  相似文献   

14.
《Ceramics International》2021,47(20):28942-28950
To improve the luminescence property of Sm3+ in Y2Mo3O12, partial Ca2+-F- co-substituted Y2Mo3O12:Sm3+ phosphor, namely Y2-xCaxMo3O12-xFx:Sm3+, was prepared using a solid-state method. The effect of introducing Ca2+-F- ion pairs on structure and luminescence properties of Y2Mo3O12:Sm3+ was studied in depth. XRD patterns not only manifested that all as-prepared Y2-xCaxMo3O12-xFx:Sm3+ samples had standard Y2Mo3O12 structure, but also indicated the introduction of Ca2+-F- ion pairs did not cause the change of crystal structure. Under the near ultraviolet excitation of 404 nm, the emission peaks of Y2Mo3O12:Sm3+ were located at 567 nm, 605 nm and 652 nm, respectively, resulting from the 4f→4f electron transitions of Sm3+ ions. Furthermore, the luminescence intensity of Sm3+ was obviously enhanced through the co-substitution of Y3+-O2- ions with Ca2+-F- ions in Y2Mo3O12 structure, and the chromaticity coordinates moved towards red region, which due to the environmental effect of crystal field around Sm3+. Besides, the red LED device was manufactured for suitable chromaticity parameters. All results indicated that the as-prepared Y1.84Ca0.06Mo3O11.94F0.06:0.10Sm3+ red-emitting phosphor could become a promising candidate for application of white light-emitting diodes and plant illumination.  相似文献   

15.
A study was conducted of the effect of additions of samarium oxide on the thermal expansion and thermal conductivity of zirconium oxide for thermal barrier coatings. SmxZr1?xO2?x/2 (0.1  x  0.5) ceramic powders synthesized with a chemical-coprecipitation and calcination method were sintered at 1873 K for 15 h. Structures of the synthesized powders and sintered ceramics were identified by X-ray diffractometer. The morphologies of ceramic powders were observed by transmission electron microscope. The thermal expansion coefficients and thermal diffusion coefficients of SmxZr1?xO2?x/2 ceramics were studied with a high-temperature dilatometer and a laser flash diffusivity technique from room temperature to 1673 K. The thermal conductivity was calculated from thermal diffusivity, density and specific heat of bulk ceramics. Sm0.1Zr0.9O1.95 ceramics consists of both monoclinic and tetragonal structures. However, Sm0.2Zr0.8O1.9 and Sm0.3Zr0.7O1.85 ceramics only exhibit a defect fluorite structure. Sm0.4Zr0.6O1.8 and Sm0.5Zr0.5O1.75 ceramics have a pyrochlore-type lattice. With the increase of Sm2O3 content, the linear thermal expansion of SmxZr1?xO2?x/2 ceramics increases except for Sm0.1Zr0.9O1.95. The thermal conductivities of SmxZr1?xO2?x/2 ceramics ranged from 1.41 at 873 K to 1.86 W m?1 K?1 at room temperature in a test temperature range of room temperature to 1673 K, and the results can be explained by phonon scattering mechanism.  相似文献   

16.
Rare‐earth (RE) titanate pyrochlore with perovskite‐layered structure is a well‐known engineering material in applied in many field. In this work, a red‐emitting phosphor of Gd2?xNaxTi2?2xSb2xO7:Eu3+ (x = 0‐0.5) was developed via cation substitutions of (Sb5+→Ti4+) and (Na+→Gd3+) in Gd2Ti2O7. The motivation is based on the fact that the introduction of cation‐disorders has been regarded to be an effective approach for improving the luminescent efficiency and thermal stability of RE‐activated materials. All the samples were synthesized via facile solid‐state reaction method. The morphology properties were measured via SEM and EDS measurements. The structural Rietveld refinement was performed to investigate the microstructure in pyrochlore lattices. The luminescence properties of Gd2?xNaxTi2?2xSb2xO7:0.15Eu3+ (x = 0‐0.5) has a strict dependence on the cation substitution levels. The band energy of Gd2Ti2O7 is 2.9 eV with a direct transition nature. The incorporation of Sb5+ and Na+ in the lattices moves the optical absorption to a longer wavelength. The cation disorder results in significant improvements of luminescence intensity, excitation efficiency in the blue region, longer emission lifetime and thermal stability.  相似文献   

17.
Highly c‐axis‐oriented Ca3Co4?xCuxO9+δ (= 0, 0.1, 0.2, and 0.3) thin films were prepared by chemical solution deposition on LaAlO3 (001) single‐crystal substrates. X‐ray diffraction, field‐emission scanning electronic microscopy, X‐ray photoelectron spectroscopy, and ultraviolet‐visible absorption spectrums were used to characterize the derived thin films. The solubility limit of Cu was found to be less than 0.2, above which [Ca2(Co0.65Cu0.35)2O4]0.624CoO2 with quadruplicated rock‐salt layers was observed. The electrical resistivity decreased monotonously with increasing Cu‐doping content when x ≤ 0.2, and then slightly increased with further Cu doping. The Seebeck coefficient was enhanced from ~100 μV/K for the undoped thin film to ~120 μV/K for the Cu‐doped thin films. The power factor was enhanced for about two times at room temperature by Cu doping, suggesting that Cu‐doped Ca3Co4O9+δ thin films could be a promising candidate for thermoelectric applications.  相似文献   

18.
《Ceramics International》2023,49(8):11921-11925
In this work, spark plasma sintering of La2Mo2O9 powder was used to achieve dense ceramics of La7Mo7O30 and explore their thermoelectric properties. SPS sintering of La2Mo2O9 powder at 973 K for 10 min under 90 MPa leads to a bicoloured sample with white and black faces. XRD patterns of white and black faces are attributed to La2Mo2O9 and La7Mo7O30 phases, respectively. These experimental conditions allow observing the in-situ reduction of La2Mo2O9 during the SPS process. With a longer sintering time of 30 min, a ceramic of La7Mo7O30 is obtained. Its electrical conductivity exhibits a semiconducting behaviour and reaches a value of 1000 Sm-1 at 1000 K. The negative Seebeck coefficient show a n-type conduction in this phase. La7Mo7O30 exhibits a very low thermal conductivity, less than 1 Wm−1K−1 from room temperature up to 1000 K, similar to the values reported for La2Mo2O9. A figure of merit of 0.04 is reached at 1000 K.  相似文献   

19.
Acceptor‐doped BaTiO3 powders of formula: BaTi1?xHoxO3?x/2?δ/2: x = 0.0001, 0.001, 0.01, 0.03, and 0.07, were prepared by sol‐gel synthesis, fired at 800°C–1500°C and either quenched or slow‐cooled to room temperature. Electrical properties of ceramics depended on firing conditions, Ho content, and cooling rate. Pellets of all x values fired at 800°C–1000°C were insulating and, from the presence of OH bands in the IR spectra, charge balance appeared to involve co‐doping of Ho3+ and H+ ions without necessity for oxygen vacancy creation. At higher firing temperatures, OH bands were absent. Pellets fired at 1400°C in air and slow cooled were insulating for both low x (0.0001) and high x (0.07) but at intermediate x (0.001 and 0.01) passed through a resistivity minimum of 20–30 Ω cm at room temperature, attributed to the presence of Ti3+ ions; it is suggested that, for these dilute Ho contents, each oxygen vacancy is charge compensated by one Ho3+ and one Ti3+ ion. At higher x, charge compensation is by Ho3+ ions and samples are insulating. A second, more general mechanism to generate Ti3+ ions, and a modest level of semiconductivity, involves reversible oxygen loss at high temperatures.  相似文献   

20.
Ta‐doped cubic phase Li7La3Zr2O12 (LLZ) lithium garnet received considerable attention in recent times as prospective electrolyte for all‐solid‐state lithium battery. Although the conductivity has been improved by stabilizing the cubic phase with the Ta5+ doping for Zr4+ in LLZ, the density of the pellet was found to be relatively poor with large amount of pores. In addition to the high Li+ conductivity, density is also an essential parameter for the successful application of LLZ as solid electrolyte membrane in all‐solid‐state lithium battery. Systematic investigations carried out through this work indicated that the optimal Li concentration of 6.4 (i.e., Li6.4La3Zr1.4Ta0.6O12) is required to obtain phase pure, relatively dense and high Li+ conductive cubic phase in Li7?xLa3Zr2?xTaxO12 solid solutions. Effort has been also made in this work to enhance the density and Li+ conductivity of Li6.4La3Zr1.4Ta0.6O12 further through the Li4SiO4 addition. A maximized room‐temperature (33°C) total (bulk + grain boundary) Li+ conductivity of 3.7 × 10?4 S/cm and maximized relative density of 94% was observed for Li6.4La3Zr1.4Ta0.6O12 added with 1 wt% of Li4SiO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号