首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT) epitaxial thin films were grown on SrRuO3 (SRO) coated (001)‐oriented SrTiO3 (STO) single crystal substrates by pulsed laser deposition under different oxygen partial pressures in the processing of deposition. The effects of oxygen partial pressure on structure, cation stoichiometry, surface morphology, leakage current behavior, ferroelectric, and piezoelectric properties were investigated. Both the lattice parameters and (Ba + Ca)/(Ti + Zr) cation ratio decrease with increasing oxygen partial pressure. The BCZT thin film with the ideal cation stoichiometry was obtained under 200 mTorr, giving rise to a remanent polarization Pr = 14.5 μC/cm2 and effective piezoelectric coefficient d33 = 96 ± 5 pm/V.  相似文献   

2.
《Ceramics International》2022,48(14):20251-20259
In this study, it is reported that various properties can be selectively derived in a pure (K0.5Na0.5)NbO3, KNN ceramics through optimizing the sintering temperature by the conventional sintering method. High piezoelectric, ferroelectric, and dielectric properties such as d33 = 127 pC/N, Pr = 31 μC/cm2, and εr = 767 are obtained at the sintering temperature of 1100 °C. On the contrary, the specimen sintered at 1130 °C does not show high piezoelectric and ferroelectric properties, but it is translucent with a transmittance of 22% and 57% at the wavelength of 800 and 1600 nm respectively and shows a very high dielectric constant εr of 881. The origin of the high piezoelectric constant owes to large remanent polarization and dielectric constant, and dense microstructure with uniform distribution of large grains with the conjunction of relatively large crystal anisotropy. On the other hand, dense microstructure with almost no porosity, highly compacted grain boundaries, uniform distribution of grains, and relatively low crystalline anisotropy are responsible for the translucency and large dielectric constant of the ceramic specimens. This study demonstrates that the lead-free KNN ceramic has the potential to show multiple noteworthy properties such as piezoelectric, ferroelectric, dielectric, and transparent properties. This work provides a pure KNN ceramic simultaneously with high piezoelectric and transparent characteristics prepared only by using the conventional sintering method at a moderate sintering temperature for the first time in the literature.  相似文献   

3.
Bulk ceramic 72.5 mol%(Bi0.5Na0.5)TiO3–22.5 mol%(Bi0.5K0.5)TiO3–5 mol%Bi(Mg0.5Ti0.5)O3 (BNT–BKT–BMgT) has previously been reported to show a large high‐field piezoelectric coefficient (d33* = 570 pm/V). In this work, the same composition was synthesized in thin film embodiments on platinized silicon substrates via chemical solution deposition. Overdoping of volatile cations in the precursor solutions was necessary to achieve phase‐pure perovskite. An annealing temperature of 700°C resulted in good ferroelectric properties (Pmax = 52 μC/cm2 and Pr = 12 μC/cm2). Quantitative compositional analysis of films annealed at 650°C and 700°C indicated that near ideal atomic ratios were achieved. Compositional fluctuations observed through the film thickness were in good agreement with the existence of voids formed between successive spin‐cast layers, as observed with electron microscopy. Bipolar and unipolar strain measurements were performed via double laser beam interferometry and a high effective piezoelectric coefficient (d33,f) of approximately 75 pm/V was obtained.  相似文献   

4.
《Ceramics International》2015,41(8):9555-9559
A second calcination–milling step was introduced in the conventional processing of (K, Na)0.5NbO3 (KNN) ceramics (sintered in air) to further homogenenize the particle size distribution of the pre-sintered powders. The ceramic derived from the powders prepared by the two-step route possesses grains with better uniformity and is more compact. The relative density of the bulk ceramic reached 96.9%. Excellent properties are obtained in as-prepared KNN ceramics with kp=44%, d33=111 pC/N, tanδ=0.85%, ε33T/εo=311, Qm=193, Pr=25.4 μC/cm2, d33=251 pm/V, which are superior to those of the ceramics derived from the powders calcined once as used in the traditional processing. These results indicate that twice-calcination–milling route is shown to be a facile and effective way to simultaneously improve the piezoelectric and ferroelectric properties of KNN ceramics without sintering aids.  相似文献   

5.
《Ceramics International》2014,40(6):7947-7951
Lead free (1−x)(0.8Bi0.5Na0.5Ti0.5O3–0.2Bi0.5K0.5TiO3)–xBiZn0.5Ti0.5O3 (x=0–0.06) (BNT–BKT–BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel processing technique. The effects of BZT content on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT–BKT–BZT thin films were investigated systematically. The BNT–BKT–BZT thin films undergo a transition from ferroelectric to relaxor phase with increasing temperature. The phase transition temperature decreases with the increase of BZT content. The BNT–BKT–BZT thin film with x=0.04 exhibits the best ferroelectric properties (Pmax=40 µC/cm2 and Pr=10 µC/cm2), largest dielectric constant (ε=560) and piezoelectric constant (d33=40 pm/V). This finding demonstrates that the BNT–BKT–BZT thin film has an excellent potential for demanding high piezoelectric properties in lead free films.  相似文献   

6.
Bi0.5(Na0.82K0.18)0.5TiO3 lead free thick films have been produced using a combination of screen printing and subsequent infiltration of corresponding composite sol. Their structure, dielectric, ferroelectric and piezoelectric properties were investigated with variation in the number of composite sol infiltrations and the nanopowder loading in composite sol. Dielectric constant, remanent polarization, and piezoelectric coefficient have been shown to increase with increasing numbers of composite sol infiltration. Dielectric and ferroelectric properties of the thick films are found to be strongly dependent on the powder concentration of composite sols. The resulting 40 μm thick films infiltrated with 1.5 g/ml composite sols have maximum relative permittivity of 569 (at 10 kHz), remanent polarization of 21.3 μC/cm2, coercive field of 80 kV/cm, and longitudinal effective piezoelectric coefficient d33eff of 109 pm/V. The performance of these lead free piezoelectric thick films is comparable to the corresponding bulk ceramics.  相似文献   

7.
The piezoelectric properties of (K0.5Na0.5)NbO3 (KNN) are normally enhanced by chemical substitutions or doping to form solid solutions. In this study, we report that the piezoelectric properties of KNN and thermal stability of piezoelectric coefficient d33 can be both enhanced by forming the composite of KNN:ZnO. The d33 of KNN:0.2ZnO can be improved to 110 pC/N by introducing the ZnO nanoparticles, which is better than the pure KNN (d33 = 85 pC/N). The Curie temperature (TC = 407°C) remains well comparable to the pure KNN (TC = 408°C). Furthermore, the thermal stability of both remanent polarization (Pr) and piezoelectric parameter (d33) is improved. The enhanced thermal stability could be related to the induced built‐in electric field or the enhanced sinterability by the addition of ZnO. The present results may help to optimize the piezoelectric properties of lead‐free materials by forming composite.  相似文献   

8.
The integration units with functional and structural material components have been developed largely recently. In the present study, 200 nm-thick polycrystalline PbZr0.52Ti0.48O3 (PZT) films with a dense columnar structure were grown on LaNiO3 (LNO) buffered heat-resistant steel substrates via a low-cost chemical solution approach. The behavior of the functional PZT films when combined with the structural steel was investigated mainly by TEM and electrical measurement. A large in-plane compressive stress was obtained in the PZT films due to the thermal expansion mismatch of about 88.2 % between the thin films and the steel substrates, which intensifies the orientation of the films toward c-axis. Sub-10 nm 90° nanodomains were alternately distributed in [001] grains which is beneficial to the piezoelectric performance, and the equivalent d33 value is ~44.4 pm V?1. A remnant polarization (Pr) of ~67.3μC/cm2 and a dielectric constant of ~425 were obtained. The enhanced electrical properties are associated with the stress-induced improved c-axis spontaneous polarization and crystal orientation in the hybrid system. This work may provide a theoretical basis for further integrating functional elements into metallic materials, which is valuable for covering the gap between academic research and industrial mass production.  相似文献   

9.
《Ceramics International》2023,49(2):1960-1969
This study sheds a light on the in-situ growth of nanoflakes structure in Bi0.9La0.1Fe0.5Mn0.5O3 (BLFMO) thin film. The BLFMO thin films of various thicknesses were grown on LaNiO3 (LNO) coated Si (100) substrates using pulsed laser deposition technique. A long-range crystal structure of the as prepared BLFMO thin films was studied by X-ray diffraction measurements, which shows that the LNO buffer layer allows growth for a specific orientation. The compact and densely packed nanoflake structures in BLFMO thin film samples were confirmed by surface morphological investigations. To measure the polarization versus electric field (p-E) loop of BLFMO chip samples, a standard bipolar sinusoidal waveform with its magnitude of 250 kV/cm was applied at the frequency of 1 kHz. The maximum saturation and remnant polarizations of 104.50 μC/cm2 and 86.24 μC/cm2 respectively were probed for a critical thickness (420 nm) of the BLFMO layer. The voltage polarity-dependent leakage current behavior of Ag/BLFMO/LNO thin-film capacitor is thoroughly explored in detail. The value of leakage current density was observed from 1.16 × 10?4 to 2.24 × 10?5 J/cm2 for BLFMO thin films at an external applied electric field of 300 kV/cm. The highest tunability ~60.20% and minimum temperature capacitance coefficient ~1.23 × 10?3 were also observed for the same critical thickness of proposed chip element. The present study may open up a new opportunity to fabricate thin film based ferroelectric memory devices.  相似文献   

10.
Perovskite solid solution ceramics of (1 ? x)BiFeO3xBaTiO3 (1 ? x)BF–xBT, 0.2 ≤ x ≤ 0.45) with high electrical resistivity were prepared by solid‐state reaction method. Actual ferroelectric hysteresis loops and temperature dependence of dielectric constant of the ceramics were obtained. Ceramics of 0.7BF–0.3BT with small rhombohedral distortion show highest remnant polarization (Pr = 26.0 μC/cm2) and piezoelectric coefficient (d33 = 134 pC/N). Compositions with pseudo‐cubic symmetry (intermediate phases) show relaxor‐like dielectric anomaly. The values of Pr and d33 decrease with increasing BT content, from 24.8 μC/cm2 and 104 pC/N for 0.65BF–0.35BT to 8.2 μC/cm2 and 5 pC/N for 0.55BF–0.45BT.  相似文献   

11.
Lead‐free piezoceramics with the composition (1?x)(K1?yNay)NbO3‐x(Bi1/2Na1/2)ZrO3 (KNyN‐xBNZ) were prepared using a conventional solid‐state route. X‐ray diffraction, Raman spectroscopy, and dielectric measurements as a function of temperature indicated the coexistence of rhombohedral (R) and tetragonal (T) phase, typical of a morphotropic phase boundary (MPB) as the BNZ concentration increased and by adjusting the K/Na ratio. High remnant polarization (Pr=24 μC/cm2), piezoelectric coefficient (d33=320 pC/N), effective piezocoefficient ({d_{33}^*}=420 pm/V), coupling coefficient (kp=48%), and high strain (S=0.168%) were obtained at room temperature, but significant deterioration of Pr, {d_{33}^*}, and kp were observed by increasing from room temperature to 160°C (17.5 μC/cm2, 338 pm/V, and 32%, respectively) associated with a transition to a purely T phase. Despite these compositions showing promise for room‐temperature applications, the deterioration in properties as a function of increasing temperature poses challenges for device design and remains to be resolved.  相似文献   

12.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) films with different thicknesses were prepared by polyvinylpyrrolidone (PVP)-modified chemical solution deposition (CSD) method. The KNN films with thickness up to 4.9 μm were obtained by repeating deposition-heating process. All KNN thick films exhibit single perovskite phase and stronger (1 1 0) peak when annealed at 650 °C. The variation of dielectric constant with thickness indicates that there exists a critical thickness for the dielectric constant in the KNN films which should lie in 1.3–2.5 μm. The similar trend is observed for the ferroelectric and piezoelectric properties of KNN films. Both the remnant polarization Pr and the piezoelectric coefficient d33 of KNN thick films increase with the film thickness and become saturated after the critical thickness.  相似文献   

13.
This paper describes the deposition of PZT/lanthanum nickel oxide (LNO) electrode thin-film capacitor on a Si(1 0 0) substrate with a chemical solution deposition (CSD). Highly (1 0 0)-oriented LNO film with a perovskite structure was deposited by annealing at 700 °C from a precursor solution of La(NO3)3 and Ni(CH3COO)2. In addition, highly (1 0 0)&(0 0 1)-oriented PZT/LNO capacitor was deposited on LNO/Si substrate by annealing at 600 °C, showing Pr = 18 μC/cm2 and Ec = 36 kV/cm. Furthermore, the resultant PZT/LNO thin-film capacitor exhibited no fatigue up to 108 switching cycles.  相似文献   

14.
The effect of high doping levels of manganese (Mn) on the structure and electrical properties of (KxNa1?x)NbO3 (KNN) ceramics containing Li, Ta, and Sb has been investigated. The samples were measured using synchrotron X‐ray diffraction whereas Rietveld refinement with Fullprof was used to determine the structural information as a function of temperature. Temperature‐dependent dielectric measurement was used to compare the phase transition temperatures. The results show that Mn decreases the temperature range of phase coexistence between the orthorhombic and tetragonal phase from ~180°C to ~120°C. The Curie temperature remained unchanged with Mn addition while the dielectric constant and dielectric loss increased with Mn addition. High amounts of Mn led to a reduction in both piezoelectric and ferroelectric properties. The remnant polarization, remnant strain, and piezoelectric coefficient values decreased from 24 μC/cm2, 0.000824, 338 ± 37 pm/V to 13 μC/cm2, 0,00014 and 208 ± 27 pm/V, respectively for the undoped and 5 mol% Mn‐doped sample.  相似文献   

15.
We have investigated the electromechanical response of potassium sodium niobate (K0.5Na0.5NbO3 or KNN) thick films. The high‐field strain hysteresis loops and weak‐field converse piezoelectric d33 coefficient of the films were measured and compared with those of KNN bulk ceramics under the same electric field conditions. The converse d33 values of the thick films and bulk ceramics were equal to 82.5 and 138 pm/V, respectively, at 0.4 kV/mm. The fundamental difference between the piezoelectric response of the KNN films and the ceramics was studied in terms of the effective (“clamped”) piezoelectric d33 coefficient. The reduction in the piezoelectric d33 coefficient of the KNN films, resulting from the clamping by the substrate, was compared to lead‐based ferroelectric thick films, including Pb(Zr,Ti)O3 (PZT) and (1 ? x)Pb(Mg1/3Nb2/3)O3?xPbTiO3 (PMN‐PT). We propose a possible explanation, based on the particular elastic properties of KNN, for the small relative difference observed between the “clamped” and “unclamped” (“bulk”) d33 of KNN, in comparison with lead‐based systems.  相似文献   

16.
Lead-free piezoelectric Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCZT) thin films were fabricated on Si/SiO2/TiO2/Pt (100) substrates following chemical solution deposition technique. Microstructure of the nano-sized BCZT particles crystallized in the thin film was thoroughly characterized. Ferroelectric, dielectric and piezoelectric properties of the films were investigated in detail. The BCZT films annealed at 800°C temperature exhibited high remanent polarization of 25 ± 1 μC/cm2, energy density of 17 J/cm3, dielectric constant of 1550 ± 50 and dielectric tunability of 50%. Converse piezoelectric coefficients (d33) obtained from piezo-response force microscopy (PFM) measurements on BCZT grains of different grain size (20-100 nm) distributed on the BCZT 700 film varied widely from 90 to 230 pm/V. The same for BCZT 800 measured on different grain size (30-130 nm) varied from 120 to 295 pm/V. These BCZT thin films with high dielectric, ferroelectric, and piezoelectric properties might be good alternative to the PZT films for thin film piezoelectric device applications.  相似文献   

17.
The xBiFeO3-(1-x)Ba(Zr0.02Ti0.98)O3 + 1.0 mol% MnO2 (xBF-BZT) lead-free piezoelectric ceramics were prepared by conventional solid-state reaction method. The structure, dielectric, and piezoelectric properties were studied. X-ray diffraction (XRD) analysis showed that xBF-BZT ceramics exhibited pure perovskite structure with the coexistence of tetragonal and rhombohedral phases (0.66 ≤ x ≤ 0.74). The Curie temperature Tc, the dielectric constant εr (1 kHz), dielectric loss tanδ (1 kHz), piezoelectric constant d33, coercive field Ec (80 kV/cm), and remnant polarization Pr (80 kV/cm) of 0.7BF-0.3BZT-Mn ceramics were 491°C, 633, 0.044, 165 pC/N, 35.6 kV/cm, and 22.6 μC/cm2, respectively. The unipolar strain of 0.7BF-0.3BZT reached up to 0.20% under the electric field of 60 kV/cm, which is larger than that (0.15%) of BiFeO3–BaTiO3 ceramics. These results indicated that the xBF-BZT ceramics were promising candidates for high-temperature piezoelectric materials.  相似文献   

18.
Mn‐doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (MnBNBT) thin films were prepared on SrRuO3 (SRO)‐coated (001) SrTiO3 (STO) single crystal substrates by pulsed laser deposition under different processing conditions. Structural characterization (i.e., XRD and TEM) confirms the epitaxial growth of STO/SRO/MnBNBT heterostructures. Through the judicious control of deposition temperature, the defect level within the films can be finely tuned. The MnBNBT thin film deposited at the optimized temperature exhibits superior ferroelectric and piezoelectric responses with remanent polarization Pr of 33.0 μC/cm2 and piezoelectric coefficient d33 of 120.0 ± 20 pm/V.  相似文献   

19.
BiMeO3 (where Me denotes a transition metal) is often used as a chemical modifier to form the Bi0.5Na0.5TiO3-based solid solutions and to improve the electromechanical properties of the materials. In this study, BiMnO3 was selected as a chemical modifier, and (1 − x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)–xBiMnO3 thin films with x = 0, 0.005, 0.01, and 0.015 were fabricated using the metal organic decomposition method to study the contributions of the third end-member BiMnO3 to the reduction in the leakage current and the enhancement of the piezoelectric properties of Bi0.5Na0.5TiO3-BaTiO3 thin films. Thin films with 1 mol% BiMnO3 exhibit a lower leakage current, and a better piezoelectricity and ferroelectricity, whose Smax/Emax, Pmax, 2Ec, and εr are 100.4 pm/V, 48.0 μC/cm2, 54.9 kV/cm, and 942, respectively.  相似文献   

20.
Orientation‐engineered (La, Ce) cosubstituted 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 thin films were epitaxially deposited on CaRuO3 buffered (LaAlO3)0.3(Sr2AlTaO6)0.35 single‐crystal substrates by pulsed laser deposition. The ferroelectric, piezoelectric, dielectric, and leakage current characteristics of the thin films were significantly affected by the crystallographic orientation. We found that the (001)‐oriented film exhibited the best ferroelectric properties with remnant polarization Pr = 29.5 μC/cm2 and coercive field Ec = 7.4 kV/mm, whereas the (111)‐oriented film demonstrated the largest piezoelectric response and dielectric permittivity. The bipolar resistive switching behavior, which is predominantly attributed to a combined effect of ferroelectric switching and formation/rupture of conductive filaments, was observed. The conduction mechanisms were determined to be ohmic conduction and Poole–Frenkel emission at high‐ and low‐resistance states, respectively, in all the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号