共查询到20条相似文献,搜索用时 15 毫秒
1.
Wenlong Li Zhifu Liu Faqiang Zhang Qingbo Sun Yun Liu Yongxiang Li 《Ceramics International》2019,45(9):11920-11926
In this work, (Li, Nb) co-doped TiO2 ceramics (LNTOx, x?<?0.1), were synthesized through a conventional solid state reaction method. As revealed by X-ray diffraction (XRD) spectra, all LNTO ceramics exhibited pure tetragonal rutile structure. The LNTO0.01 ceramic showed a colossal permittivity over 7000 and a low dielectric loss (tgδ?<?0.06) in a wide frequency range of 102?Hz–107?Hz. The dielectric spectra under DC biases were tested at different temperatures. The experimental data could fit the modified Debye equation well. It was found that there are multiple dielectric polarization mechanisms in LNTO ceramics including space charge polarization, relaxor-type relaxation, polaron hopping and dipole polarization related with localized electrons. 相似文献
2.
Zhuo Wang Haonan Chen Tian Wang Yujia Xiao Wenwen Nian Jiahao Fan 《Journal of the European Ceramic Society》2018,38(11):3847-3852
The appearance of colossal permittivity materials broadened the choice of materials for energy-storage applications. In this work, colossal permittivity in ceramics of TiO2 co-doped with niobium and europium ions ((Eu0.5Nb0.5)xTi1-xO2 ceramics) was reported. A large permittivity (εr ~ 2.01?×?105) and a low dielectric loss (tanδ ~ 0.095) were observed for (Eu0.5Nb0.5)xTi1-xO2 (x?=?1%) ceramics at 1?kHz. Moreover, two significant relaxations were observed in the temperature dependence of dielectric properties for (Eu, Nb) co-doped TiO2 ceramics, which originated from defect dipoles and electron hopping, respectively. The low dielectric loss and high relative permittivity were ascribed to the electron-pinned defect-dipoles and electrons hopping. The (Eu0.5Nb0.5)xTi1-xO2 ceramic with great colossal permittivity is one of the most promising candidates for high-energy density storage applications. 相似文献
3.
LiCuNb3O9 has been reported newly a colossal permittivity (CP) perovskite, in which the B-site NbO6 octahedra play a bridging role in the polaron hopping. However, how the A-site modification affects the origin of the polarons and further the CP behaviours remains unexplored. To this end, A-site Ca2+ was incorporated to form Li1-xCaxCuNb3O9, and the local states, dielectric relaxations and conduction behaviours were comprehensively studied. The substitution induces the polyvalent Cu cations, i.e. Cu+/Cu2+/Cu3+. Bond valence sum calculations imply that Cu2+ and Cu3+ are underbonded, and Cu+ is overbonded, while B-site Nb5+ shows slightly different with theoretical pentavalence. All the compositions exhibit a similarly room-temperature CP response, but present two dielectric relaxations, i.e. TR1:170–300 K and TR2:260–400 K. Comprehensive investigations on universal dielectric response and bulk dc conductivity indicate that the TR1 follows the variable-range-hopping where the electron hopping between the mixed Cu+/Cu2+, while TR2 contributes from the Cu3+ nearest neighbor hopping. 相似文献
4.
Kun Yu Ye Tian Rui Gu Li Jin Ruiping Ma Hongchen Sun Youlong Xu Zhuo Xu Xiaoyong Wei 《Journal of the European Ceramic Society》2018,38(13):4483-4487
Perovskite-type solid electrolyte lanthanum lithium titanate (LLTO), exhibiting high intrinsic ionic conductivity, has been attracting interests because of its potential use in all solid-state lithium-ion batteries. In this work, we prepared LLTO ceramics by solid state reaction method and studied their conductivity and dielectric properties systematically. It is found that the bulk conductivity of LLTO is several orders of magnitude higher than the grain boundary conductivity. In addition, colossal permittivity was observed in LLTO ceramics in wide frequency/temperature ranges. Two non-Debye type relaxation peaks were observed in the imaginary part of permittivity, resulting from Li+ ions motion and accumulation near interfaces of grains/grain boundaries/electrodes. It is suggested that colossal permittivity may originate from the lithium ion dipoles inside the samples and the interfacial polarization of lithium ion accumulation near the grain boundaries. These results clarify the relations among colossal permittivity, relaxation behavior and ionic conduction in solid ion conductor ceramics. 相似文献
5.
Effect of isovalent Zr dopant on the colossal permittivity (CP) properties was investigated in (Zr + Nb) co‐doped rutile TiO2 ceramics, i.e., Nb0.5%ZrxTi1?xO2. Compared with those of single Nb‐doped TiO2, the CP properties of co‐doped samples showed better frequency‐stability with lower dielectric losses. Especially, a CP up to 6.4 × 104 and a relatively low dielectric loss (0.029) of x = 2% sample were obtained at 1 kHz and room temperature. Moreover, both dielectric permittivity and loss were nearly independent of direct current bias, and measuring temperature from room temperature to around 100°C. Based on X‐ray photoelectron spectroscopy, the formation of oxygen vacancies was suppressed due to the incorporation of Zrions. Furthermore, it induced the enhancement of the conduction activation energy according to the impedance spectroscopy. The results will provide a new routine to achieve a low dielectric loss in the CP materials. 相似文献
6.
S.T. Wang J. Sun Y. Yu Q.J. Li L. Tong Y.M. Guo C.C. Wang 《Ceramics International》2018,44(13):15110-15115
Investigations on dielectric properties of N2-sintered TiO2 ceramic samples followed by chemically oxidized in H2O2 aqueous solution with different time spans were performed in the frequency range of 102–106 Hz. The results reveal that the dielectric properties strongly depend on the lengths of oxidizing time. An optimum oxidizing time of 12–16?h gives rise to superior dielectric properties with the permittivity of 12589 and the loss factor of 0.34 at 100?Hz. The time effect is attributed to the formation of an insulating layer at grain boundaries. Chemical oxidation proves to be a facile strategy to manipulate the insulating layer and opens a new way to modify the dielectric permittivity of versatile oxides. 相似文献
7.
Control of grain boundary in alumina doped CCTO showing colossal permittivity by core-shell approach
Sonia De Almeida-Didry Meledje Martin Nomel Cécile Autret Christophe Honstettre Anthony Lucas François Pacreau François Gervais 《Journal of the European Ceramic Society》2018,38(9):3182-3187
Grain boundaries of CaCu3Ti4O12 (CCTO) materials have been shown to play leading role in colossal permittivity. Core-shell design is an attractive approach to make colossal dielectric capacitors by controlling the grain boundaries. Core-shell grains of CCTO surrounded by Al2O3 shell were synthesized by ultrasonic sol-gel reaction from alumina alkoxide precursor. The influence of alumina shell by comparison with bare CCTO grains was studied. Particularly, microstructure, dielectric and electric effects on sintered ceramics are reported. The average grain size and the density are increased compared to undoped CCTO leading to an improvement of permittivity from 58,000 to 81,000 at 1?kHz. Furthermore a decrease of dielectric loss is found in a frequency range of 102–103?Hz. Moreover, the activation energy of grain boundaries is increased from 0.55 to 0.73?eV and the electrical properties such as breakdown voltage, non-linear coefficient and resistivity are improved with the aim of making industrial capacitors. 相似文献
8.
Pb0.325Sr0.675Ti1-xMnxO3 ceramics (x?=?0, 0.001, 0.005, 0.01, and 0.05) were successfully prepared by traditional solid-state reaction method. It was found that the lattice constant calculated through Rietveld refinement initially increased and then decreased with increasing Mn content, which was attributed to the variation in valence state of Mn and Ti ions. The microstructure gradually varied from the coexistence of large grains and fine grains for x?=?0 to the uniform grain for x?=?0.05 by increasing the doping Mn ions. With increasing Mn content from x?=?0 to x?=?0.05, the Curie temperature (Tc) dramatically decreased from 25?°C to ??40?°C and dielectric maximum decreased from 27,100 to 13,200. Pb0.325Sr0.675Ti1-xMnxO3 ceramics with x?=?0.001 showed the lowest dielectric loss of 0.006 with a relatively high dielectric peak value of ~ 21,000. The grain boundaries resistance obtained from the complex impedance decreased with the increase of Mn content. The decrease in resistance was ascribed to oxygen vacancies and electronics produced by the change of ionic valence state. X-ray photoemission spectroscopy revealed that Ti ions were Ti4+ and the valences of Mn ions were deduced to be mainly in the form of Mn2+ and/or Mn3+ for ceramics with low content of Mn, while the Ti ions were in the form of Ti3+ and Ti4+ and Mn ions were diverse valence states with the coexistence of Mn2+, Mn3+, and Mn4+ for ceramics with x?=?0.01 and 0.05. 相似文献
9.
A.G. Muñoz 《Electrochimica acta》2007,52(12):4167-4176
The semiconducting properties of anodic grown TiO2-nanotubes were analyzed by means of the potential dependence of the interfacial capacity under different electrolyte and illumination conditions. The experimental results offer evidence for a duplex oxide film conformed by the bottom and wall of pores with different density of donors and concentration of surface states. The surface extension offered by the walls of oxide tubes is manifested in surface related effects such as the shift of the flat band potential and trapping of photoelectrons. 相似文献
10.
A novel polyblend electrolyte consisting of KI and I2 dissolved in a blending polymer of polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) was prepared. The formation of −I3 in the polymer electrolyte was confirmed by X-ray photoelectron spectroscopy (XPS) characterization. Due to the coordinating and plasticizing effect by PVP, the ionic conductivity of the polyblend electrolyte is enhanced. The highest ionic conductivity of 1.85 mS cm−1 for the polyblend electrolyte was achieved by optimizing the compositions as 40 wt.% PVP + 60 wt.% PEG + 0.05 mmol g−1 I2 + 0.10 mmol g−1 KI. Based on the polyblend electrolyte, a DSSC with fill factor of 0.59, short-circuit density of 9.77 mA cm−2, open-circuit voltage of 698 mV and light-to-electricity conversion efficiency of 4.01% was obtained under AM 1.5 irradiation (100 mW cm−2). 相似文献
11.
The temperature dependent dielectric properties of (Ba0.54875Sr0.44875La0.0025)Ti(1+x)O3 with both an excess and a deficiency of 0.25 mol.% TiO2 were investigated. The samples were prepared by the mixed oxide method and sintered in a conventional oven at temperatures ranging from 1400 °C to 1475 °C. The cubic perovskite structure was confirmed with XRD at room temperature. The sample with an excess of 0.25 mol.% Ti exhibited reduced grain growth while abnormal grain growth was observed for samples without Ti modification. Samples exhibited colossal permittivity for all modified compositions. With a 0.25 mol.% deficiency of Ti a permittivity over 65,000 and a tan δ under 0.05 were measured over a temperature range of ?68 °C to 150 °C and a frequency range between 50 kHz and 1 MHz. This paper shows that by fine tuning the composition, materials with new, exciting and widely adjustable dielectric properties can be achieved. 相似文献
12.
This paper describes the synthesis and characterization of three-dimensional hybrid inorganic-organic networks prepared by a polycondensation reaction between Zr(O(CH2)3CH3)4 and polyethylene glycol 400 (PEG400). Eleven hybrid networks doped with varying concentrations of LiClO4 salt were prepared. On the basis of analytical data and FT-Raman studies it was concluded that these polymer electrolytes consist of inorganic-organic networks with zirconium atoms bonded together by PEG400 bridges. These polymers are transparent with a solid rubber consistency and are very stable under inert atmosphere. Scanning electron microscopy revealed a smooth glassy surface. X-ray fluorescence microanalysis with energy dispersive spectroscopy demonstrated that all the constituent elements are homogeneously distributed in the materials. Thermogravimetric measurements revealed that these materials are thermally stable up to 262 °C. Differential Scanning Calorimetry measurements indicated that the glass transition temperature Tg of these inorganic-organic hybrids varies from −43 to −15 °C with increasing LiClO4 concentration. FT-Raman investigations revealed the TGT (T=trans, G=gauche) conformation of polyether chains and allowed characterization of the types of ion-ion and ion-polymer host interactions in the bulk materials. The conductivity of the materials at different temperatures was determined by impedance spectroscopy over the 20 Hz-1 MHz frequency range. Results indicated that the materials conduct ionically and that their ionic conductivity is strongly influenced by the segmental motion of the polymer network and the type of ionic species distributed in the bulk material. Finally, it is to be highlighted that the hybrid network with a nLi/nO molar ratio of 0.0223 shows a conductivity of ca. 1×10−5 S cm−1 at 40 °C. 相似文献
13.
Xiao-Liang Xia 《Electrochimica acta》2010,55(19):5301-1846
Gd2(Zr1−xNbx)2O7+x (0 ≤ x ≤ 0.2) ceramics are prepared via the solid state reaction process at 1973 K for 10 h in air. Gd2(Zr1−xNbx)2O7+x (x = 0.1, 0.2) ceramics exhibit an ordered pyrochlore-type structure, whereas Gd2Zr2O7 has a defective fluorite-type structure. The electrical property of Gd2(Zr1−xNbx)2O7+x ceramics is investigated by electrochemical impedance spectroscopy over a frequency range of 10 Hz to 8 MHz from 623 to 923 K. The electrical conductivity obeys the Arrhenius equation. The grain conductivity of Gd2(Zr1−xNbx)2O7+x ceramics varies with doping different Nb contents, and exhibits a maximum at the Nb content of x = 0.1 in the temperature range of 623-923 K. The conductivity in hydrogen atmosphere is a little bit higher than in air in the temperature range of 723-923 K, which indicates that the doping of Zr4+ by Nb5+ can increase the proton-type conduction and reduce the oxide-ionic conduction. The conduction of Gd2(Zr1−xNbx)2O7+x is not a pure oxide-ionic conductor. 相似文献
14.
In this study, we examine the interaction of N2O with TiO2(1 1 0) in an effort to better understand the conversion of NOx species to N2 over TiO2-based catalysts. The TiO2(1 1 0) surface was chosen as a model system because this material is commonly used as a support and because oxygen vacancies on this surface are perhaps the best available models for the role of electronic defects in catalysis. Annealing TiO2(1 1 0) in vacuum at high temperature (above about 800 K) generates oxygen vacancy sites that are associated with reduced surface cations (Ti3+ sites) and that are easily quantified using temperature programmed desorption (TPD) of water. Using TPD, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS), we found that the majority of N2O molecules adsorbed at 90 K on TiO2(1 1 0) are weakly held and desorb from the surface at 130 K. However, a small fraction of the N2O molecules exposed to TiO2(1 1 0) at 90 K decompose to N2 via one of two channels, both of which are vacancy-mediated. One channel occurs at 90 K, and results in N2 ejection from the surface and vacancy oxidation. We propose that this channel involves N2O molecules bound at vacancies with the O-end of the molecule in the vacancy. The second channel results from an adsorbed state of N2O that decomposes at 170 K to liberate N2 in the gas phase and deposit oxygen adatoms at non-defect Ti4+ sites. The presence of these O adatoms is clearly evident in subsequent water TPD measurements. We propose that this channel involves N2O molecules that are bound at vacancies with the N-end of the molecule in the vacancy, which permits the O-end of the molecule to interact with an adjacent Ti4+ site. The partitioning between these two channels is roughly 1:1 for adsorption at 90 K, but neither is observed to occur for moderate N2O exposures at temperatures above 200 K. EELS data indicate that vacancies readily transfer charge to N2O at 90 K, and this charge transfer facilitates N2O decomposition. Based on these results, it appears that the decomposition of N2O to N2 requires trapping of the molecule at vacancies and that the lifetime of the N2O–vacancy interaction may be key to the conversion of N2O to N2. 相似文献
15.
Characterization by XPS–UPS and XRD of commercial bulk WO2 enabled us to identify the presence of four to five layers of WO3 on the sample surface with an equal amount of W5+, possibly W20O58 in the interface. The presence of these WO3 and W20O58 on the WO2 surface were not detected by XRD. Exposure of commercial bulk WO2 to hydrogen at temperatures higher than 673 K results in the reduction of surface WO3 to WO2 and the formation of the bifunctional WO2(Hx)ac phase on its surface. A complete conversion of surface WO3 to WO2(Hx)ac has been obtained following the exposure of the sample to hydrogen for at least 6 h at 773 K. A conversion of 52% of n-heptane at 573 K reaction temperature and a selectivity of 90% in isomerization products, mainly 2,3-MH and multibranched molecules were obtained. The isomerization products distribution is in agreement with the statistical and thermodynamic equilibrium of the methyl-shift mechanism. The stability of the active WO2(Hx)ac phase has been tested under prolonged exposure to hydrogen and the reaction mixture. Similar results were obtained in the case of bulk WO3 and WO3/TiO2 systems. Dehydration and dehydrogenation of 2-propanol were studied on these systems at 393 K reaction temperature. 相似文献
16.
C.R. Mariappan P. Kumar A. Kumar S. Indris H. Ehrenberg G. Vijaya Prakash R. Jose 《Ceramics International》2018,44(13):15509-15516
We report on the ion transport properties of Li1+xZr2-xYx(PO4)3 (0.05?≤ x?≤?0.2) NASICON type nanocrystalline compounds prepared through a Pechini-type polymerizable complex method. Structural properties were characterized by means of powder X-ray diffraction, Raman spectroscopy and electron microscopy with selected area electron diffraction. Impedance spectroscopy was utilised to investigate the lithium ion transport properties. Y3+ doped LiZr2(PO4)3 compounds showed stabilized rhombohedral structure with enhanced total ionic conductivity at 30?°C from 2.87?×?10?7 S?cm?1 to 0.65?×?10?5 S?cm?1 for x=0.05 to 0.20 respectively. The activation energies of Li1+xZr2-xYx(PO4)3 show a decreasing trend from 0.45?eV to 0.35?eV with increasing x from 0.05 to 0.20. The total conductivity of these compounds is thermally activated, with activation energies and pre-exponential factors following the Meyer-Neldel rule. The tanδ peak position shifts to the high-frequency side with increasing yttrium content. Scaling in AC conductivity spectra shows that the electrical relaxation mechanisms are independent of temperature. 相似文献
17.
The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the UVI corrosion product, [UO2]2+. As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO2) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (UIV → UV → UVI). At low potentials (≤250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a UVIO2CO3 surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer. 相似文献
18.
The Li content and anion lattice of Li4SiO4 were modified to improve ionic conductivity. Li2CO3 and Si3N4 were mixed in a ratio of Li/Si?=?4.5 and heated in NH3 at 820?°C, which resulted in the formation of the oxynitride, Li4.1SiO3.9N0.1. Powder X-ray diffraction analyses revealed Li4.1SiO3.9N0.1 and Li4SiO4 to be isostructural with a subtle variation in the lattice constants. Diffuse-reflectance absorption spectroscopy, however, showed a significant decrease in the band gap, from 5.6?eV in Li4SiO4 to 4.8?eV in Li4.1SiO3.9N0.1. X-ray photoelectron spectra of the Li 1s and Si 2p levels revealed enhanced lattice covalency in Li4.1SiO3.9N0.1 compared to the oxide phase. The ionic conductivity of Li4SiO4 and Li4.1SiO3.9N0.1 were measured by ac impedance spectroscopy over the temperature range 100–400?°C. Non-linear fitting analysis of the equivalent circuit revealed that the ionic conductivity of Li4.1SiO3.9N0.1 was approximately one order of magnitude higher than that of Li4SiO4. 相似文献
19.
Zhenzhu Cao Jiajia Zhao Jiangtao Fan Guorong Li Hong Zhang 《Ceramics International》2021,47(5):6711-6719
Material with high dielectric constant plays an important role in energy storage elements. (Gd + Nb) co-doped TiO2 (GNTO) ceramics with giant dielectric permittivity (>104), low dielectric loss, good temperature and frequency stability in broad range of 30–150 °C and 102–106 Hz have been systematically characterized. Especially, a low dielectric loss of 0.027 and a giant dielectric permittivity of 5.63 × 104 at 1 kHz are attained for the composition with x = 0.01. Results of complex impedance spectroscopy, I–V curve and frequency dependent dielectric constant under DC bias indicate that internal barrier layer capacitance (IBLC) effect, electrode effect and electron-pinned defect-dipole (EPDD) effect contribute to the colossal permittivity (CP) property simultaneously. 相似文献
20.
Astri Bjørnetun Haugen Izumi KumakiriChristian Simon Mari-Ann Einarsrud 《Journal of the European Ceramic Society》2011,31(3):291-298
TiO2, TiO2/Ag and TiO2/Au photocatalysts exhibiting a hollow spherical morphology were prepared by spray pyrolysis of aqueous solutions of titanium citrate complex and titanium oxalate precursors in one-step. Effects of precursor concentration and spray pyrolysis temperature were investigated. By subsequent heat treatment, photocatalysts with phase compositions from 10 to 100% rutile and crystallite sizes from 12 to 120 nm were obtained. A correlation between precursor concentration and size of the hollow spherical agglomerates obtained during spray pyrolysis was established. The anatase to rutile transformation was enhanced with metal incorporations and increased precursor concentration. The photocatalytic activity was evaluated by oxidation of methylene blue under UV-irradiation. As-prepared TiO2 particles with large amounts of amorphous phase and organic residuals showed similar photocatalytic activity as the commercial Degussa P25. The metal incorporated samples showed comparable photocatalytic activity to the pure TiO2 photocatalysts. 相似文献