首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用超声波强化液相还原法制备活性炭颗粒(GAC)稳定化纳米级Pd/Fe复合颗粒,并对2-氯联苯(2-CB)进行催化还原脱氯研究。结果表明:40k Hz超声波辐照强化下制备的GAC稳定化纳米级Pd/Fe复合颗粒的比表面积、粒径和分散性均较普通液相还原法制备的复合颗粒有明显改善,粒径均在100nm以下,比表面积增大了21.73%。当复合颗粒钯化率为0.3%(质量分数)且GAC和Pd/Fe投加量分别为0.15g/L和5.0g/L时,在反应温度25℃、初始pH为3的条件下反应300min后,对初始质量浓度为10mg/L的2-CB降解率近95%,符合拟一级反应动力学,反应速率常数为3.88×10~(–2)min~(–1)。  相似文献   

2.
《广东化工》2021,48(14)
以高比表面积石油焦基活性炭为载体,利用溶胶-凝胶法制备二氧化钛(TiO_2)负载型光催化剂,并探讨其对亚甲基蓝光催化降解性能。使用XRD、SEM、BET、TEM及EDS等检测手段,对催化剂表面形态进行表征。通过考察不同负载量、煅烧温度、升温速率、煅烧时间、固液比及亚甲基蓝浓度等因素对亚甲基蓝降解性能的影响,结果表明:所制备的负载型光催化剂,Ti O_2颗粒能均匀地分散在活性炭表面,颗粒尺寸在10 nm左右,对亚甲基蓝具有较好的降解作用。在活性炭负载量6%、煅烧温度350℃、煅烧时间2 h、升温速率15℃/min、固液比0.5 g/L条件下制备的负载型催化剂,对浓度为10.44 mg/L的亚甲基蓝溶液,其降解率可达99%以上。对降解过程进行动力学模拟分析,该催化剂对亚甲基蓝催化降解过程符合准二级动力学模型,反应速率常数k为6.76 L/(g·min)。  相似文献   

3.
制备了Ce掺杂的TiO2复合SiO2光催化剂(Ce-TiO2/SiO2),使用该光催化剂在模拟太阳光下催化降解亚甲基蓝水溶液,研究了催化剂用量、亚甲基蓝初始质量浓度、溶液pH、无机阴离子对光催化降解效果的影响。结果表明:n(Ce)∶n(Ti)∶n(Si)=0.002∶1∶1时所制催化剂的光催化活性最好;对于2.5 mg/L、pH为11的亚甲基蓝溶液,投加100 mg/L的光催化剂反应2 h可达到最高降解率(92.6%);NO3-、SO42-、Cl-的存在对光催化降解具有抑制作用。  相似文献   

4.
以浸渍法制备了负载型光催化剂PW/MCM-41,并对催化剂进行了表征,考察了催化剂在光催化模拟染料废水亚甲基蓝(MB)溶液降解反应中的催化活性.实验结果表明:催化剂负载量为30%、催化剂投加质量浓度为3.0g/L、MB溶液的初始质量浓度为10 mg/L、pH=5、光照时间100 min时,对亚甲基蓝降解率可达91%以上...  相似文献   

5.
采用水热合成法制备出氟掺杂膨润土负载锡酸钙复合光催化剂,采用X射线衍射(XRD)、扫描电子显微镜(SEM)等分析手段对样品的形貌和结构进行了表征,并在可见光条件下考察了催化剂用量、氟掺杂量、反应时间等因素对复合光催化剂降解亚甲基蓝废水溶液性能的影响。结果表明:氟掺杂量为0.04%(质量分数)时复合光催化剂对亚甲基蓝溶液的降解效果最好,当催化剂质量浓度为60 mg/L,反应时间为13 min时,其对亚甲基蓝溶液的降解率可达98.6%。  相似文献   

6.
利用自行合成的膨胀珍珠岩负载型纳米零价铁(EP-nZVI)去除偶氮染料酸性大红(AR)和甲基橙(MO)。考察了EP-nZVI质量浓度、初始p H、温度和单一染料初始质量浓度对EP-n ZVI去除染料的影响。实验证明EP-n ZVI可以快速高效地降解溶液中的AR和MO。SEM和XRD表征结果表明,负载于膨胀珍珠岩(EP)的纳米铁粒子具有良好的分散性;对照实验显示EP具有一定的吸附作用,EP-n ZVI去除AR和MO的效果优于nZVI。动力学研究表明,EP-nZVI去除AR和MO是一个快速吸附同时发生氧化还原的过程,是受表面控制的反应。紫外-可见光谱分析表明,EP-n ZVI通过断裂AR和MO分子中的偶氮基实现快速降解染料。  相似文献   

7.
以壳聚糖、氯乙酸为主要原料合成了N-羧甲基壳聚糖,通过溶胶-凝胶法制备得到了N-羧甲基壳聚糖/纳米TiO_2复合材料。利用红外(IR)、x-射线衍射(XRD)、扫描电镜(SEM)对复合材料进行了表征,并考察了复合材料对亚甲基蓝溶液、亚甲基绿溶液、1,9-二甲基亚甲基蓝的降解性能,探讨了溶液的初始浓度、pH值、复合材料掺杂比及煅烧温度等因素对降解率的影响。实验研究发现,煅烧温度为300℃、掺杂比为2∶5的复合材料在温度30℃下,对初始浓度为8 mg/L,pH=9的3种染料分子溶液的降解效果最好,降解率分别为90.62%、83.75%、95.16%。  相似文献   

8.
采用溶剂热法制备SnWO_4/g-C_3N_4复合光催化剂,在可见光降解亚甲基蓝实验中研究复合催化剂的光催化性能。考察催化剂投加量、亚甲基蓝溶液初始浓度、溶液pH值、盐效应对光催化性能的影响及SnWO_4/g-C_3N_4复合光催化剂的重复利用性。实验结果表明,在催化剂投加量1.0 g·L~(-1)、亚甲基蓝溶液初始浓度15 mg·L~(-1)和溶液pH值7.08时,在可见光条件下反应3 h,亚甲基蓝溶液脱色率达到94.2%;NaCl对光催化降解亚甲基蓝具有抑制作用,加入10 mmol·L~(-1)的NaCl溶液后亚甲基蓝的脱色率降为76.0%;复合光催化剂循环使用5次后,暗吸附后光照3 h,亚甲基蓝溶液的总脱色率仍可达到78.7%,重复利用性良好。  相似文献   

9.
以葡萄糖为原料,采用水热法合成纳米碳球。合成的碳球用硝酸进行处理,然后用磷钨酸进行附载,制备了碳球负载磷钨酸复合材料。采用IR、SEM技术对材料进行表征,同时研究了样品光催化降解亚甲基蓝(MB)溶液的效能。研究显示,碳球负载磷钨酸作为催化剂降解10 mg/L的亚甲基蓝溶液,经过180 min的反应后,亚甲基蓝的降解率达到92%,明显的高于纯磷钨酸做催化剂的20%。  相似文献   

10.
采用水热和沉淀两步合成法制备AgBr/Zn_3(OH)_2V_2O_7·2H_2O催化剂,研究其在可见光下降解亚甲基蓝溶液的性能,并考察催化剂用量、亚甲基蓝溶液初始浓度、p H值以及盐浓度对光催化性能的影响,评价AgBr/Zn_3(OH)_2V_2O_7·2H_2O催化剂的重复使用性能。结果表明,在前驱液pH为10、120℃水热10 h、Ag与Br物质的量比为0. 20条件下制备的复合催化剂在可见光下反应120 min后,1. 0 g·L~(-1)的催化剂对10 mg·L~(-1)的亚甲基蓝溶液脱色率达到85. 2%。NaCl对亚甲基蓝的降解起抑制作用,Na_2SO_4对亚甲基蓝的降解起促进作用。催化剂重复使用4次后,光照120 min后的亚甲基蓝溶液脱色率可达66. 4%。催化剂对不同初始浓度亚甲基蓝溶液的光催化降解符合一级动力学模型。  相似文献   

11.
以静电纺聚四氟乙烯(PTFE)超细纤维为载体,采用浸渍-烧结法制备出PTFE超细纤维负载二氧化钦(TiO_2)催化膜。研究了该催化膜在紫外光下,不同反应条件对亚甲基蓝的光催化降解性能影响,探讨了负载型TiO_2光催化剂的循环回收利用率。结果表明:通过浸渍-烧结法可以成功制备出PTFE超细纤维负载TiO_2光催化膜,经450℃煅烧后TiO_2为锐钛矿晶型;在波长为365 nm,功率为300 W的紫光灯照射55 min,浸渍负载5h制备的TiO_2/PTFE超细纤维催化膜对初始浓度为5 mg/L,体积100 ML的亚甲基蓝溶液催化降解除率可达99%;在经过5次循环后,催化剂对亚甲基蓝的降解率仍达46%,回收利用率较高。  相似文献   

12.
采用由小麦秸秆制备的生物炭(Biochar,BC)作为纳米零价铁(Nanoscale zero-valent iron,n ZVI)载体,制备出一种高效非均相催化剂-生物炭负载纳米零价铁(n ZVI@BC),用于活化过一硫酸盐(Peroxymonosulfate,PMS)降解高硫酸盐印染废水中的典型染料亚甲基蓝(Methylene Blue,MB)。n ZVI@BC 表征结果表明,BC 具有优良的稳定性且富含活性官能团,负载于 BC 上的 n ZVI 分散性好。通过批次实验探究了初始 p H、n ZVI@BC 投加量、PMS 浓度和硫酸钠浓度对 n ZVI@BC/PMS 体系降解 MB 的影响。结果表明,在 MB 初始质量浓度为 40 mg/L,p H 为 3,n ZVI@BC 投加量为 0.2 g/L,PMS 质量浓度为 0.4 g/L,Na2SO4浓度为 0.2 mol/L 的条件下,反应 30 min 后 n ZVI@BC/PMS 体系对 MB 的降解率达到 90.36%。Na2SO4浓度超过...  相似文献   

13.
《应用化工》2022,(5):1163-1166
以硝酸铋、磷酸二氢钠、钛酸丁酯和氧化银为原料,采用溶胶-凝胶法和高温煅烧法制备了Ag/TiO_2/BiPO_4光催化剂,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)等进行表征。以亚甲基蓝为降解物,研究了催化剂的光催化降解性能,并利用捕获实验探究其光降解反应机理。结果表明,异质结的构建可延长可见光响应范围,降低光生电子-空穴对的复合率。主要活性物质为h+和·O+和·O(2-)。在催化剂质量为1.0 g/L、亚甲基蓝初始浓度50 mg/L、pH=4、降解30 min时,亚甲基蓝的降解率可达99.34%。  相似文献   

14.
利用溶胶凝胶法实现了N掺杂改性的Ti O2在粉煤灰漂珠(FAC)表面的负载,成功制备出N-Ti O2/FAC复合光催化剂。以亚甲基蓝为降解对象,研究了不同煅烧温度、不同N掺杂量的复合光催化剂在可见光条件下的光催化活性与反应动力学性能。试验表明:煅烧温度为450℃,N掺杂量为25%的条件下制备的N-Ti O2/FAC光催化降解亚甲基蓝的效果最优,对亚甲基蓝的降解效率比N-Ti O2高10%,比Ti O2/FAC高40%,且该催化剂漂浮于水面可通过相分离得以回收。  相似文献   

15.
采用溶胶-凝胶法将ZnO掺杂进荧光粉/TiO_2体系,并以活性炭纤维(ACF)为载体,制备了Pr~(3+)∶Y_2SiO_5/ZnO-TiO_2/ACF复合材料。采用XRD、SEM、EDS、FS和UV-vis DRS,对材料的结构及性能进行了表征,并以亚甲基蓝为模拟降解物,考察了ZnO掺杂量对复合材料可见光催化性能的影响。结果表明,当ZnO掺杂质量为TiO_2质量的10%时,制得的复合材料光催化性能最强,在500 mL质量浓度为15 mg/L的亚甲基蓝溶液中反应12 h后亚甲基蓝去除率高达98.0%,反应符合拟一级动力学方程,反应速率常数为0.341 3 h~(-1),是未掺杂ZnO的Pr~(3+)∶Y_2SiO_5/TiO_2/ACF的1.75倍,复合材料重复使用4次后亚甲基蓝去除率仍然保持在85%以上。  相似文献   

16.
以壳聚糖包覆介孔-微孔复合分子筛(CS/MCM-41-A)为吸附剂去除水中的亚甲基蓝,研究了反应时间、溶液pH、溶液亚甲基蓝初始浓度、CS/MCM-41-A投加量、竞争离子对吸附的影响,分析了CS/MCM-41-A的吸附动力学和热力学特征。结果表明,25℃下,当CS/MCM-41-A投加量为0.3 g/L,溶液亚甲基蓝初始浓度100 mg/L,pH为6,吸附时间为40 min时,溶液中亚甲基蓝的去除率达到92.57%。CS/MCM-41-A吸附亚甲基蓝符合拟二级动力学方程,吸附等温线更好地符合Langmuir方程,CS/MCM-41-A对亚甲基蓝的有良好的吸附性能。  相似文献   

17.
以镧掺杂磷酸铋为光催化剂、亚甲基蓝为降解对象,研究多种因素对光催化降解的影响并建立动力学模型。模型的主要参数有亚甲基蓝初始浓度、紫外光照强度、La~(3+)-Bi PO_4投加量。当亚甲基蓝初始浓度较低时,La~(3+)-Bi PO_4对其光催化降解的反应较好地符合表观一级反应动力学特征。表观反应速率常数k'=0.025 4c_0~(-1.796 7)I~(1.148 8)M~(0.656 3),该模型计算值与实验值吻合较好,可用于预测紫外光催化降解低浓度亚甲基蓝的规律。  相似文献   

18.
采用共沉淀法合成了锌锰铝类水滑石前驱体,经过焙烧处理后制备了锌锰铝复合氧化物,用于催化H2O2氧化分解亚甲基蓝,探讨了H2O2用量、亚甲基蓝初始质量浓度、催化剂用量和反应时间对降解脱色率的影响。实验表明,在H2O2质量分数为3%,亚甲基蓝初始质量浓度为25 mg/L,催化剂用量为1.0 g/L,反应时间为4 h时,亚甲基蓝平均脱色率可达到92.23%。  相似文献   

19.
以硝酸锌、二甲基咪唑(制备沸石咪唑酯骨架结构材料(ZIF)的主要原料)、以及硝酸铈等制备了Ce掺杂的Zn O光催化剂(即Ce-ZnO),对催化剂进行了XRD,SEM,EDS等表征分析,考察了Ce掺杂量、废水初始pH等对亚甲基蓝降解影响,用UV-Vis(可见-紫外光谱)对亚甲基蓝降解液进行了分析。研究表明,与ZIF为前驱体的Zn O的形貌和晶体结构类似,Ce掺杂的Zn O催化剂仍为方形颗粒微纳米材料(颗粒尺寸约100 nm)、Zn O为六方晶系纤锌矿结构,但颗粒尺寸减小。掺杂1%的Ce可使Zn O的光催化剂活性提高(光催化剂降解亚甲基蓝的反应速率提高了31%),且具有较好的重复利用性能。Ce-ZnO光催化剂催化降解亚甲基蓝的反应符合一级反应动力学,弱碱性(pH≈10)环境有利于亚甲基蓝光催化剂降解,亚甲基蓝在光催化反应中其显色基团、芳香基团被分解并产生了酸性物质,亚甲基蓝被有效降解。  相似文献   

20.
本文对紫外光活化过硫酸钾技术处理亚甲基蓝模拟染料废水进行了研究。结果表明,紫外光/过硫酸钾对于亚甲基蓝降解有明显的促进效果,在过硫酸钾浓度为50 mmol·L~(-1)、亚甲基蓝初始浓度为50 mg·L~(-1)、反应温度为40℃、光照时间为10 min的条件下,亚甲基蓝降解率最大,为95.03%。硫酸根对染料废水降解有少许的抑制作用,亚铁离子在0.6 mmol·L~(-1)以下的浓度范围内对降解有促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号