首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高有机泡沫浸渍法制备的碳化硅网状多孔陶瓷的抗折强度,采用碳纤维对碳化硅网状多孔陶瓷进行增强。研究了添加剂和碳纤维对碳化硅陶瓷浆料流变性能和触变性能的影响以及碳纤维长度和添加量对试样微观结构、气孔率、耐压强度、抗折强度的影响。结果表明:当分散剂-FS20添加量为0.1%(质量分数),增稠剂-CMC添加量为0.1%(质量分数),粘结剂-CL添加量为0.05%(质量分数)时,碳化硅陶瓷浆料的流变性能和触变性能达到最佳,碳纤维的加入增加了浆料的粘度;另外,随着碳纤维添加量和长度的增加,试样的抗折强度呈现先增大后减小的变化趋势。当碳纤维长度为1 mm且添加量为0.75%(质量分数)时,试样抗折强度达到最大。  相似文献   

2.
以尼龙66为基体材料,添加碳纤维、增韧剂、流动改性剂等相关功能助剂,通过双螺杆挤出机制备了碳纤维增强尼龙66复合材料,采用注塑工艺制备了碳纤维增强尼龙66复合材料的标准试样,研究了碳纤维及流动改性剂含量对复合材料力学性能和熔体流动性能的影响。结果表明,提升碳纤维含量可以大幅度提高碳纤维增强尼龙66复合材料的力学性能,当碳纤维质量分数为35%时,复合材料的拉伸强度达到251 MPa,比纯尼龙66树脂提高了210%,弯曲强度由纯树脂的72 MPa提高到358 MPa,提高了397%,缺口冲击强度提高了178%,达到22 kJ/m~2。通过加入流动改性剂可以提高碳纤维增强尼龙66复合材料的熔体流动速率(MFR),并且不影响复合材料的力学性能,当流动改性剂的质量分数为1%时,碳纤维质量分数为25%的复合材料的MFR达到16.1 g/(10 min),比未添加流动改性剂时提高了193%,碳纤维质量分数为35%的复合材料的MFR为15.5 g/(10 min),比未添加流动改性剂时提高了319%。  相似文献   

3.
陈祯  王亚凤  陈兴刚  桑晓明 《塑料》2020,49(3):24-27
以改性短碳纤维为增强材料增强PC/ABS合金,采用熔融共混的方法制备了PC/ABS短碳纤维复合材料,研究了复合材料样条的力学性能与短碳纤维含量的关系。扫描电镜和红外光谱分析表明,纤维的改性有利于其与PC/ABS合金的结合。拉伸性能测试结果表明,3和6 mm改性碳纤维均能提高复合材料的拉伸强度,3 mm碳纤维复合材料优于6 mm。当3 mm的改性碳纤维复合材料添加量为10%时,复合材料的拉伸强度比含3%碳纤的复合材料提高了35. 52%;动态力学性能测试结果表明,添加改性碳纤维能提高复合材料的储能模量,增强复合材料的刚性。  相似文献   

4.
刘茂晨  肖建华  李志鹏 《塑料工业》2020,48(2):97-102,117
以热塑性聚酯弹性体(TPEE)为基体材料,8 mm短切碳纤维(CF)为增强材料,制备CF/TPEE复合材料。材料通过双螺杆挤出系统混合塑化、挤出造粒后,再经过注塑成型制备成标准拉伸试样,通过力学性能测试及微观结构观察,系统研究了碳纤维含量和等离子表面处理对CF/TPEE复合材料拉伸性能的影响。结果表明,当碳纤维含量为20%时,CF/TPEE复合材料的拉伸强度最大,为39.08 MPa;相比于纯TPEE,其拉伸强度提高了217%;经过等离子表面处理后,拉伸强度进一步提高了5%。结合拉伸后断面的SEM图发现,注塑试样表层碳纤维取向度高,而近中区和中心层取向度相对较低,这是注射CF/TPEE复合材料拉伸性能提高效应不明显的主要原因。  相似文献   

5.
使用搅拌机将不同长度的碳纤维掺入混凝土中制备纤维混凝土,养护28 d后测试纤维混凝土的力学性能,以碳纤维掺量(质量分数为0~0.6%)和碳纤维长度(10,15,20 mm)作为变量,研究混凝土的抗压强度、劈拉强度和抗拉强度随碳纤维掺量和碳纤维长度的变化规律。结果表明:随着碳纤维掺量和碳纤维长度的增加,纤维混凝土的抗压强度、劈拉强度和抗拉强度均呈现先增加而后降低的趋势;碳纤维长度一定时,碳纤维质量分数为0.2%的纤维混凝土的抗压强度、劈拉强度和抗拉强度均为最大;碳纤维掺量一定时,掺入纤维长度为15 mm的纤维混凝土的抗压强度、劈拉强度和抗拉强度均为最大;当掺入碳纤维质量分数为0.2%、碳纤维长度为15 mm时,纤维混凝土的力学性能最佳,其抗压强度、劈拉强度和抗拉强度分别为82.4 MPa、7.1 MPa和11.7 MPa。  相似文献   

6.
汪传生  张鲁琦  边慧光  李海涛 《橡胶工业》2018,65(11):1243-1247
本文主要通过碳纤维添加量的不同来研究碳纤维用量对NR/CF(橡胶/碳纤维)复合材料的力学性能、导电性、导热性、加工性能和动态力学性能的影响。研究结果表明,NR/CF复合材料在添加3phr碳纤维时,力学性能最好。在添加15phr时,橡胶试样体积电阻率比未添加碳纤维的降低了3个数量级。导热系数比未添加碳纤维的试样最高提高21.8%。随着碳纤维添加量增多,试样抗湿滑性能和滚动阻力都有所上升。  相似文献   

7.
为保证油气井固井长期封固的有效性,需要在油井水泥基材料中添加增强增韧材料改善水泥浆性能。针对短切碳纤维对油井水泥基复合材料性能的影响,研究了短切碳纤维加入到油井水泥基材料中的流变性、稠化时间、失水量以及抗压强度、抗折强度和抗冲击强度,最后对碳纤维水泥石微观形貌进行观察。实验结果表明,碳纤维对水泥浆流变性和稠化时间影响较小,对水泥浆施工无不利影响,碳纤维的加入可以有效降低水泥浆的失水量;在0.4%碳纤维加量范围内,水泥石的抗压强度、抗折强度、抗冲击强度随着碳纤维加量增大均有不同程度的增大。养护28 d后,0.4%碳纤维水泥石的抗压强度、抗折强度、抗冲击强度较空白水泥石分别提高19.1%、34.4%、21.1%;短切碳纤维水泥浆凝固形成水泥石后,纤维通过粘结力和机械咬合力限制水泥试件中局部裂缝的扩展,同时也消耗水泥石破坏能量,从而增强力学性能。研究结果为碳纤维在油井水泥基材料中的应用提供借鉴与参考。  相似文献   

8.
采用机械混合方法,在8YSZ电解质材料中添加3Y-TZP,目的是在满足YSZ电解质电学性能要求的前提下,提高材料的力学性能.试样在常压下烧结,通过弯曲强度﹑断裂韧性﹑电导率测定和相组成分析,讨论了3Y-TZP添加量的影响.实验结果表明:加入3Y-TZP能显著提高陶瓷体的力学性能,弯曲强度和断裂韧性随着添加量的增多而提高;电学性能在0~30%(质量百分比,下同)的添加量时下降很小.添加30% 3Y-TZP的电解质材料在1000 ℃电导率为0.11 S/cm,强度接近300 MPa,综合效果最好.  相似文献   

9.
采用石墨烯和氧化石墨烯(GO)作为增强体、无水乙醇作为稀释剂,对紫外光固化树脂进行物理改性。通过3D打印制备石墨烯增强光固化树脂试样,研究了石墨烯和GO添加量对光固化树脂力学性能的影响。结果表明,与石墨烯相比,GO含有更多的极性含氧基团,能与极性光固化树脂之间形成非共价键,改善了GO在光固化树脂中的均匀分散性。当GO添加量为0.15%时,与纯树脂相比,拉伸强度从27.99 MPa提高至37.31 MPa,提高了约32.30%,冲击强度从17.79 kJ/m2提高至25.48 kJ/m2,提高了约43.00%;与添加0.05%石墨烯相比,拉伸强度和冲击强度分别提高了23.67%和13.20%。因此,添加GO对提高光固化树脂的力学性能效果更佳。  相似文献   

10.
以短切玻璃纤维作为增强材料制备了短切玻纤/低密度不饱和聚酯树脂制品。通过压缩强度测试和红外光谱分析研究了偶联剂KH-570对短切玻纤的改性效果。在确定短切玻纤的长度和线密度的基础上,以短切玻纤掺量、发泡剂掺量和成型温度3个变量为因素进行三因素五水平的正交实验,研究了短切玻纤/低密度不饱和聚酯树脂样品的最佳制备条件及力学性能。结果表明:E-短切玻纤的增强性能优于C-短切玻纤。当E-短切玻纤的用量为树脂质量的15%,发泡剂用量为树脂质量的2.0%,成型温度为117.5℃时,E-短切玻纤增强的低密度不饱和聚酯树脂样品的性能最佳,其表观密度为0.49 g/cm3,压缩强度为18.23 MPa,比压缩强度为37.16 MPa·g-1·cm3。样品的压缩强度优于未添加短切玻纤的低密度不饱和聚酯树脂样品。  相似文献   

11.
利用自行搭建的挤出发泡实验平台制备并研究了聚丙烯(PP)/聚烯烃弹性体(POE)木塑复合材料的微孔发泡挤出过程。通过对材料流变性能以及试样微观结构和力学强度的表征,考察了成核剂滑石粉以及木粉含量对原料加工特性和试样泡孔结构的影响。结果表明,滑石粉以及木粉的添加均会导致物料黏度的提高;其中,当滑石粉添加量为10份,树脂与木粉质量比为7/3时,试样的力学性能最优。其中,试样的拉伸强度和弯曲强度都达到了最大值,分别为8. 3 MPa和22. 1 MPa,而试样的冲击强度则为6 k J/m~2,但是继续添加滑石粉和木粉则会导致试样力学性能下降以及维卡软化温度的降低。此外,试样的泡孔尺寸和泡孔密度也分别达到最小值和最大值,分别为71μm和2. 7×10~5个/cm~3。  相似文献   

12.
以聚丙烯(PP)为基体,鳞片石墨(FG)为填料,通过添加偶联剂、开炼机混炼、模压成型的方法,制备了具有较高热导率和优良力学性能的PP/FG导热复合材料。考察了硅烷偶联剂的品种及用量、FG的粒径及含量对复合材料热导率和力学性能的影响。结果显示,使用偶联剂处理的FG对复合材料的力学性能具有一定的增强作用,但是材料的热导率降低;当KH 550添加量为FG含量的1%时,材料的力学性能最好;随着FG粒径的增大,材料的热导率明显提高,力学性能相应下降,粒径为17μm的FG与148μm的FG制备的复合材料相比,热导率提高了52.3%,拉伸强度和弯曲强度分别由34.4 MPa和51.5 MPa下降到25.1 MPa和43.0 MPa;随着FG含量的增加,材料的热导率增大,当17μm的FG含量为70%时,材料的热导率是纯PP的22.1倍,拉伸弹性模量和弯曲弹性模量也随之增大,断裂拉伸应变和断裂弯曲应变减小,拉伸强度和弯曲强度先减小后增大,并且在FG含量为20%时降到最低。  相似文献   

13.
以烧结镁钙砂、电熔镁砂和铝粉为原料,热塑性无水树脂为结合剂,混练后在180 MPa压力下成型,经200℃12 h烘烤后,制备了树脂结合MgO-CaO材料试样,并研究了Al粉加入量(质量分数分别为0、2%、4%、6%)对试样的常温物理性能、高温抗折强度和抗热震性的影响及其与物相组成和显微结构的关系。结果表明:加入Al粉后,试样的高温抗折强度(1400℃)显著提高,从未加Al粉时的5.6 MPa提高到17.7~31.6 MPa;抗热震性保持较好的水平,1100℃风冷3次后的抗折强度保持率为66%~88%。这类材料具有良好高温力学性能的原因为:试样中Al粉在埋焦炭加热过程中与C和N2反应,原位生成的AlN和Al4C3填充、穿插在方镁石或方钙石结构中,起到增强、增韧的作用,提高了材料的高温力学性能。  相似文献   

14.
以均苯四羧酸二元酐-4,4’-二氨基二苯醚(PMDA-ODA)型聚酰亚胺为研究对象,加入不同含量和不同长径比的表面处理之后的碳纤维(CF),采用直接法制备聚酰亚胺/碳纤维(PI/CF)复合薄膜。热酰亚胺化时采用的升温工艺条件:以5℃/min的升温速率从室温升至300℃,恒温30 min。通过各种表征手段,对比讨论碳纤维添加量和长径比对复合薄膜的影响。对制备的PI/CF复合薄膜进行偏光、红外、XRD、拉伸测试。实验结果表明:碳纤维的加入可以诱导聚酰亚胺分子结晶;聚酰亚胺薄膜的聚集态结构和性能受碳纤维的添加量,长径比等的影响。随着碳纤维含量的增加复合薄膜的力学性能先随之增强后又减弱。因此,碳纤维含量过多或过少都不利于增强复合薄膜的力学性能及复合薄膜规整结晶结构的形成。碳纤维长径比越大有助于复合薄膜的力学性能的提高;当添加量为3%时所制备的复合薄膜的聚集态结构较为规整,结晶程度较高,拉伸性强度为96.37 MPa,弹性模量为1 949.97 MPa,断裂伸长率为5.914%。  相似文献   

15.
为了改善超高分子量聚乙烯(PE-UHMW)的加工性能,提高其力学性能,以木粉和碳纤维为填料,制备了高填充量碳纤维增强PE-UHMW/木粉复合材料。研究了碳纤维含量对PE-UHMW/木粉复合材料弯曲性能、拉伸性能及动态热机械性能的影响。研究结果表明,加入碳纤维可提高PE-UHMW/木粉复合材料的弯曲强度及拉伸强度。拉伸强度和弯曲强度都随着碳纤维的含量的增加呈现出先增加后减小的趋势。当碳纤维质量分数为3%时,弯曲强度达到最大值,为25.2 MPa,比未加碳纤维时提高了46.5%。当碳纤维质量分数为2%时,弯曲强度达到最大值,为38.4 MPa,比未加碳纤维时提高了27.1%。随着碳纤维含量的增加,复合材料的储能模量显著提高。碳纤维的加入使复合材料的损耗因子峰值增大。  相似文献   

16.
为了改善Al_2O_3-ZrO_2材料的烧结性能和力学性能,在Al_2O_3-ZrO_2材料配料中添加不同量(质量分数分别为0、0. 25%、0. 5%、0. 75%、1%和1. 25%)的纳米MgO,经成型、干燥、1 550℃保温3 h烧后,检测试样的烧后线变化率以及烧后试样的体积密度、显气孔率、吸水率、常温耐压强度、常温抗折强度和高温抗折强度,并进行XRD和SEM分析。结果表明:1)添加纳米MgO可促进Al_2O_3-ZrO_2材料的烧结致密化,并改善其力学性能。当纳米MgO添加量为1%(w)时,Al_2O_3-ZrO_2材料的综合性能较佳,试样的体积密度、显气孔率、吸水率和线收缩率分别为3. 34 g·cm-3、18. 7%、5. 9%和7. 6%,常温耐压强度、常温抗折强度和高温抗折强度分别为251、81. 0和24. 0 MPa。2)纳米MgO对Al_2O_3-ZrO_2材料烧结致密化和力学性能的提高归因于MgO和ZrO_2形成有限固溶体时于ZrO_2晶体中引入的缺陷促进了Zr~(4+)的扩散速率,以及亚稳态t-ZrO2发生应力诱导相变时对基体材料产生的强化作用。  相似文献   

17.
利用碳纤维(CF)增强聚苯腈(PN)树脂制备一系列PN/CF复合材料,利用万能试验机和动态热机械分析仪(DMA),研究短CF含量、长度与偶联剂种类对PN树脂力学性能的影响。结果表明,采用苯基三乙氧基硅烷作为偶联剂时力学性能和热稳定性达到最佳水平,相较于未经偶联剂改性PN/CF复合材料的储能模量提高了22.2%,热失重5%温度(Td5%)提高了33.1%;随着CF掺杂量的增加,材料力学性能呈现先增大后减小趋势,在0.3%(质量分数,下同)时获得了最优异力学性能,相较于PN树脂,其弯曲强度提高了38.4%,弯曲模量提升了97.7%;CF长度为6 mm时材料的弯曲强度和储能模量优于CF长度为3 mm时的材料。  相似文献   

18.
采用熔融挤出法制备出无机颗粒(IP)增强聚酰胺6(PA6)复合材料,使用叠层模压法制备了IP/碳纤维(CF)共增强PA6复合材料(PA6/IP/CF)。利用场发射扫描电子显微镜、万能试验机等研究了IP的形貌和含量对复合材料性能的影响。结果表明,当滑石粉(TALC)的添加量达到10%(质量分数,下同)时,PA6/CF/TALC复合材料的各项力学性能达到最大值,弯曲强度为374.6 MPa、剪切强度为58.7 MPa、冲击强度为76.9 kJ/m~2;当玻璃微珠(GB)的添加量达到15%时,PA6/CF/GB复合材料的各项力学性能达到最大值,弯曲强度为404.4 MPa、剪切强度为66.7 MPa、冲击强度为86.5 kJ/m~2;GB相较于TALC对复合材料的增强效果更好,使复合材料的综合力学性能得到进一步提高。  相似文献   

19.
研究了在环氧树脂(EP)中同时加入碳纤维双层间隔织物(CFDSF)与碳纳米管(CNTs)来提高EP强度的相关作用机理,探讨CNTs对EP/CFDSF/CNTs电学特性的影响。研究结果表明,随着CNTs含量的不断增加,试样的弯曲强度与冲击强度均发生了先增大后降低的现象,EP/CFDSF复合材料的力学性能明显高于EP材料。当CNTs的添加量为2. 5份时,EP/CFDSF试样的冲击强度和弯曲强度测试值达到最高,依次为18. 1 k J/m~2和146. 5 MPa,比纯EP材料的强度显著提高。不含CNTs时复合材料断面具有平整的微观形貌;添加了2. 5份CNTs的试样断面区域表现为明显的凹凸变化特点。随着CNTs添加量的增加,试样的电阻率明显下降,2. 5份CNTs的两种试样体积电阻率分别为19. 6Ω·cm和14. 8Ω·cm。  相似文献   

20.
采用原位合成与溶液共混相结合的方法,制备了短切碳纤维增强纳米羟基磷灰石(HA)/聚甲基丙烯酸甲酯(PMMA)生物复合材料。研究了碳纤维的含量和长度对HA/PMMA复合材料结构和力学性能的影响。采用万能材料试验机和扫描电子显微镜对复合材料的力学性能及断面的微观形貌进行了测试和表征。结果表明:碳纤维在HA/PMMA复合材料中分布均匀,有效提高了复合材料的力学性能;碳纤维含量为4%时,复合材料的拉伸强度、弯曲强度、压缩强度和弹性模量等均达到最大值;复合材料的断裂伸长率随碳纤维含量的增加而减小;当碳纤维含量一定时,随其长度的增加,复合材料的拉伸强度、弯曲强度和弹性模量均增加,但断裂伸长率降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号