首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long‐chain branching polypropylene (LCB‐PP) was achieved by reactive extrusion in the presence of bifunctional monomer [1,6‐hexanediol diarylate (HDDA)] and peroxide of dicumyl peroxide (DCP). Influences of HDDA and DCP concentrations on the branching efficiency were comparatively evaluated. Fourier transformed infrared spectroscopy (FTIR) results indicated that the grafting reaction took place, and HDDA has been grafted on PP skeleton. In comparison with initial PP, some modified samples showed lower melt flow index because of a large number of LCB in their skeleton. Several rheology plots were used to investigate the rheological properties of the initial PP and modified PPs, and the rheological characteristics confirmed the LCB in modified PPs skeleton. DSC results showed that the crystallization temperatures of modified PPs were higher than those of initial PP and degraded PP, suggesting that the modified PPs had long‐chain branched structure. The contrastive investigation in the rheology of modified PPs suggested that proper concentrations of HDDA and DCP were more beneficial to producing LCB during reactive extrusion. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
A biphasic impact copolymer of polypropylene (ICP) was modified with peroxide by reactive extrusion process resulting in reduced melt flow index, improved melt strength, and higher die swell. The polymers were for the first time subjected to systematic rheological and microstructural characterization in an effort to understand their structure‐property relations. In shear rheological tests, the modified ICP displayed higher flow activation energy, reduced values of loss tangent and nearly equal frequency dependence of storage and loss modulli. The modified ICP also showed strain hardening behaviour in uniaxial extensional rheology and higher crystallization temperature in differential scanning calorimetry (DSC). All these are definitive indications of the presence of long chain branches (LCB). Fitting the rheological data of modified ICPs with the eXtended Pom Pom (XPP) model indicated the presence of LCB on the higher molecular weight fraction in the polymer, a result which was corroborated with multi‐detector high temperature gel permeation chromatography (HT‐GPC). More importantly, the matrix and rubber phases of the ICP were separately characterized for presence of long chain branching by rheology, DSC and HT‐GPC. The results indicate that while LCB existed in the matrix phase, microgels were present in both phases indicating that the reaction with peroxide occurred in both phases. POLYM. ENG. SCI., 55:1463–1474, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Long chain branching (LCB) were added to linear polypropylene (PP) using reactive extrusion in the presence of selected polyfunctional monomers (PFMs) and a peroxide of dibenzoyl peroxide (BPO). Fourier Transformed Infrared spectra (FTIR) directly confirmed the grafting reaction occurred during the reactive extrusion process. Various rheological plots including viscosity curve, storage modulus, Cole‐Cole plot, and Van‐Gurp plots, confirmed that the LCB structure were introduced into modified PPs skeleton after modification. In comparison with linear PP, the branched samples exhibited higher melt strength, lower melt flow index, and the enhancement of crystallization temperature. The LCB level in modified PPs and their melt strength were affected by the type of PFM used and could be controlled by the PFM properties and structure. PFMs with lower boiling points, such as 1, 4‐butanediol diacrylate (BDDA), could not produce LCB structure in modified PP skeleton. The shorter molecular chain bifunctional monomers, such as 1,6‐hexanediol diacrylate (HDDA), favored the branching reaction if their boiling points were above the highest extrusion temperature. And some polar groups, such as hydroxyl, in the molecule of PFM were harmful to the branching reaction, which might be attributed to the harm of the polarity of groups to the dispersion of PFM in PP matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Long chain branching (LCB) of polylactic acid (PLA) was successfully prepared by melt radicals reaction with pentaerythritol triacrylate (PETA) and bis (1‐methyl‐1‐phenylethyl) peroxide (DCP). The topological structure of the LCB was investigated by rheology and branch‐on‐branch (BOB) model was used to estimate the exact chain structures of the products, where comb‐like LCB structures were generated due to the complex coupling between different macro‐radicals. LCB structure was found to affect the crystallization of PLA products. In the temperature range of 110–130°C, the crystallization rate parameter (k) was improved sharply and the half crystallization time was decreased significantly after the grafting of PETA, which was ascribed to the enhanced hydrogen bonding in PETA‐grafted long chain branching PLA. By comparing with the LCB PLA made from chain extension using multifunctional monomer, it shows that the crystallization becomes slower in a highly branched material with extremely long relaxation time if the effect of hydrogen bonding is similar. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The reactive extrusion of maleic anhydride grafted polypropylene (PP‐g‐MAH) with ethylenediamine (EDA) as coupling agent is carried out in a corotating twin‐screw extruder to produce long chain branched polypropylene (LCBPP). Part of PP‐g‐MAH is replaced by maleic anhydride grafted high‐density polyethylene (HDPE‐g‐MAH) or linear low‐density polyethylene (LLDPE‐g‐MAH) to obtain hybrid long chain branched (LCB) polyolefins. Compared with the PP‐g‐MAH, PE‐g‐MAH, and their blends, the LCB polyolefins exhibit excellent dynamic shear and transient extensional rheological characteristics such as increased dynamic modulus, higher low‐frequency complex viscosity, broader relaxation spectra, significantly enhanced melt strength and strain‐hardening behaviors. The LCB polyolefins also have higher tensile strength, tensile modulus, impact strength and lower elongation at break than their blends. Furthermore, supercritical carbon dioxide (scCO2) is constructively introduced in the reactive extrusion process. In the presence of scCO2, the motor current of the twin extruder is decreased and LCB polyolefins with lower melt flow rate (MFR), higher complex viscosity and increased tensile strength and modulus can be obtained. This indicates that the application of scCO2 can reduce the viscosity of melt in extruder, enhance the diffusion of reactive species, and then facilitate the long chain branching reaction between anhydride group and primary amine group. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
在过氧化引发剂和季戊四醇三丙烯酸酯(PETA)存在下,采用反应挤出法制备了长链支化聚丙烯(LCB-PP)。用旋转流变仪和差示扫描热法系统研究了纯的和改性PP的流变性能和热力学性能,并考察了不同过氧化引发剂对改性PP的性能和支化情况的影响。研究发现,单纯使用过氧化引发剂改性时,PP以降解为主;加入多功能单体PETA后,PP以接枝反应为主。流变行为研究发现,过氧化引发剂/PETA改性的PP,其流变性能呈现如低频处储能模量增大,剪切变稀行为明显,损耗角随频率变化出现平台区,零剪切黏度增大等特点,证明改性PP存在长链支化结构,通过公式计算发现改性PP的支化度较高。差士扫描量热分析表明,过氧化引发剂/PETA改性PP的结晶温度高于纯PP,这也说明改性PP存在长链支化结构。同时发现过氧化引发剂/PETA改性PP时,过氧化引发剂结构对改性PP的流变性能、热力学性能和支化度影响较小。  相似文献   

7.
The influence of temperature during reactive extrusion of poly(L ‐lactide) (PLLA) on the molecular architecture and crystallization behavior was investigated for OO‐(t‐butyl) O‐(2‐ethylhexyl) peroxycarbonate‐modified polymer. The long chain–branched PLLA (LCB‐PLLA) content and its structure in the resulting slightly crosslinked PLLA (χ‐PLLA) containing linear and LCB‐PLLA were characterized by both analyses, size exclusion chromatography equipped with multiangle laser light scattering and rheological measurements. A reduction of LCB‐PLLA content in χ‐PLLA and an increase of number of branches in LCB‐PLLA were found with increasing the extrusion temperature. An increase of extrusion temperature induces different process in the polymer: decrease of the lifetime of peroxide, increase of the radical concentration due to rapid peroxide decomposition rate, and increase of the chain diffusion to the amorphous phase. Among these indices, the lifetime of peroxide is a good index for crosslinking behavior of PLLA during extrusion. As for the isothermal crystallization behavior from the melt, the Avrami crystallization rate constant of χ‐PLLA increases as an increase of LCB‐PLLA content in χ‐PLLA. This implies that LCB‐PLLA acts as a nucleating agent for PLLA. Furthermore, regime analysis and the free energy of nucleus of χ‐PLLA were investigated using Hoffman–Lauritzen theory. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
We developed a novel Hierarchical Multi‐mode Molecular Stress Function (HMMSF) model for linear and long‐chain branched (LCB) polymer melts implementing the basic ideas of (1) hierarchical relaxation, (2) dynamic dilution, (3) interchain tube pressure, and (4) convective constraint release. With a minimum number of nonlinear free parameters and remarkable quantitative predictions of the rheology of polymer melts, this model is an outstanding option for the simulation of different processing operations in the polymer industry. The excellent predictions of this model were demonstrated in uniaxial, equibiaxial, and planar extensional deformations for linear and LCB melts, as well as in shear flow for a LCB polymer, with a minimum number of adjustable free nonlinear material parameters, that is, one in the case of extensional flows, and two in shear flow. In this contribution, we review the development of the HMMSF model and present a reduced number of well‐defined constitutive relations comprising the rheology of both linear and LCB melts. We also extend the comparison of model and data to cover the shear flow of a linear polymer melt. POLYM. ENG. SCI., 59:573–583, 2019. © 2018 Society of Plastics Engineers  相似文献   

9.
Linear polypropylene (PP) was modified using UV radiation in the presence of 0.5 wt % of benzophenone photoinitiator to introduce long chain branching (LCB) to the PP backbone. Irradiation was carried out in the solid state and the temperature level was kept below 60°C. The effects of radiation duration and sample thickness on the extent of these branching modification reactions were investigated. Viscoelastic properties, molecular weight, molecular weight distribution, and gel content were determined and compared for runs having different sample thicknesses, irradiated for different times. Comparisons were also conducted with the parent PP and the PP mixed with photoinitiator. It was found that LCB decreased by increasing the thickness of the samples. Conversely, an increase in radiation duration resulted in enhanced LCB but also led to larger gel content in the samples. Based on all these measurements and observations, a mechanism was suggested to explain formation of long chain branches (LCBs) in PP in the solid state via photoinitiation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41021.  相似文献   

10.
A series of polyethylene (PE) samples were prepared in a slurry polymerization with bis(cyclopentadienyl) zirconium dichloride (Cp2ZrCl2)/modified methylaluminoxane (MMAO) using a semibatch reactor. The samples had long‐chain branch densities (LCBDs) of a 0.03–1.0 branch per 10,000 carbons and long‐chain branch frequencies (LCBFs) up to a 0.22 branch per polymer molecule. The rheological and dynamic mechanical behaviors of these long‐chain branched PE samples were evaluated. Increasing the LCBF significantly increased the η0's and enhanced shear thinning. Long‐chain branching (LCB) also influenced the loss modulus and storage modulus. Increasing the LCBF led to enhanced G′ and G″ values at low shear rates and broader relaxation spectrums. The samples exhibited thermorheologically complex behavior. LCB also played a significant role in the dynamic mechanical behavior. Increasing the LCBF increased the stiffness of the polymer and enhanced the damping or energy dissipation. However, LCB had little influence on the crystalline structure of the PE. The α‐ and γ‐relaxations showed little dependence on the LCBF. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 307–316, 2004  相似文献   

11.
The effect of blending a long‐chain branched polypropylene (LCB‐PP) with a linear polypropylene (L‐PP) on the processability and properties of blown films was investigated. The rheological data revealed that blending an LCB‐PP with an L‐PP improved the elongational properties and the bubble stability, but a severe drop in the mechanical strength was observed for the blends. The most deteriorating effect was the reduction in the elongation at break in tensile tests carried out in the transverse direction (TD), where no yielding behaviour was observed for the blends.  相似文献   

12.
Incorporating long chain branching (LCB) structure into biodegradable copolyesters can effectively improve their melt strength and film blowing processability. However, branching also results in deterioration of crystallizability which is also important for copolyester properties and processing. In this study, pentaerythritol (PER) was used as branching agent (BA) instead of previous used in‐situ BA, diglycidyl 1,2,3,6‐tetrahydrophthalate (DGT), to synthesize LCB poly(butylene succinate‐co‐terephthalate) (PBST) copolyesters. The chain structure was characterized and the effects of branching on thermal transition, mechanical, and rheological properties were investigated. Similar to DGT, copolymerizing small amount of PER (0.1–0.4 mol %) generates LCB structure and, therefore, improves the melt elasticity or strength and tensile modulus but reduces the elongation at break. Differing from DGT, PER showed higher branching efficiency, and PER‐branched PBSTs exhibited unchanged or even improved crystallization ability compared with linear PBST. The improved melt strength coupled with good crystallizability will endow PER‐branched PBSTs with better film blowing processability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44544.  相似文献   

13.
Rheological control in foaming polymeric materials: I. Amorphous polymers   总被引:1,自引:0,他引:1  
Ruogu Liao  Chixing Zhou 《Polymer》2010,51(2):568-6345
The influence of rheological properties, especially melt strength, on foam structures, such as cell size, cell density and cell size distribution, of amorphous polymer was investigated. The rheology of polystyrene (PS) was controlled by molecular modification with free radical reaction, and PS with long chain branching (LCB) level ranging from 0.15 to 1.6 branching point per 104 carbon atom was gotten. The shear and elongational rheology were found to be dependent on the LCB structure, and the strain hardening behavior of modified samples in transient elongational viscosity confirmed the existence of long branched chain. The effects of chain structure and foaming conditions such as temperature and pressure were studied by the analysis on the foam structures obtained by supercritical CO2. The experimental results revealed that increasing LCB level would decrease cell size, make cell size distribution narrower and slightly increase cell density. The effects of chain topology on the foam structures were also investigated by numerical simulation, where Pom-Pom model was used to describe the effect of backbone length and arm length. The dependence of cell size on the arm length was consistently observed in experiments and simulation. It suggested that the arm length had greater influence on the cell radius than the backbone length. Therefore, the relationship among foam structures, rheological properties and molecular structures can be established from both experiments and simulation, which can be used as a guidance to control the foam structure by designing and controlling the molecular structures and the corresponding rheological properties.  相似文献   

14.
Jinghua Tian  Chixing Zhou 《Polymer》2006,47(23):7962-7969
In order to study the rheological behavior of long chain branching (LCB) polypropylene (PP), linear polypropylene was modified by melt grafting reaction in the presence of 2,5-dimethyl-2,5(tert-butylperoxy) hexane peroxide and pentaerythritol triacrylate (PETA) in mixer. The transient torque curves and Fourier transformed infrared spectroscopy (FTIR) results indicated that macroradical recombination reactions took place and PETA had been grafted onto PP backbone. Various rheological plots including viscosity curve, storage modulus, loss angle, Han plot, Cole-Cole plot were used to distinguish LCB PP from linear PP. On the other hand, to quantify the LCB level in modified PPs, a new method was suggested on the basis of macromolecular dynamics models. The results showed that the level of LCB was in the range of 0.025-0.38/104 C . Moreover, the length of the branched chains and the content of the branched component increase with PETA concentration. Furthermore, the LCB efficiency of monomer can also be calculated, less than 20% of grafting monomers was used to form branch structure.  相似文献   

15.
Effects of long-chain branches (LCBs) on the rheology, crystal polymorphism, polymorphic transformation, and corresponding thermal and mechanical properties at different crystallization conditions, of isotactic poly(1-butene) (iPB-1) are systematically studied. The complex viscosity decreases and tangent increases with the increase of LCB concentration, and they inversely correlate with gels. The low branched samples crystallize into pure Form II by compression molding and cooling the melt to room temperature at a low crystallization cooling rate, whereas the moderate-to-highly branched samples crystallize into mixtures of Forms II and III, with a 1–30% fraction of crystals of Form III. The transformation of Form II into Form I in low branched iPB-1 was not significantly decelerated at different crystallization cooling rates, which is important in thermoforming, foaming, and extrusion blowing processes. Upon heating, Form III in highly branched iPB-1 with gels does not cold-crystallize into Form II even at a low heating rate. The low-to-highly branched samples mainly in Form I exhibit high yield strength, high melting temperature, and lower ductility, while the highly branched iPB-1 containing gels and mixtures of Forms I, III, and I′ possess brittleness. Under stretching, Form III predominantly transforms into Form I via a solid–solid crystal transition. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48411.  相似文献   

16.
Nonisothermal crystallization behavior of linear and long chain branched (LCB) polyethylene (PE) samples having similar molecular weight but different long‐chain branching densities (LCBD) up to 0.44 C per 1000 carbons was investigated using differential scanning calorimetry (DSC) at various scanning rates. The LCB PE samples were prepared in our high‐temperature, high‐pressure continuous stirred‐tank reactor (CSTR) system using the constrained geometry catalyst. The existence of LCB was found to affect the PE crystallization behavior considerably. The enthalpy of crystallization and the ultimate degree of crystallinity decreased with the increase of LCBD. At the relatively low cooling rates, the small amount of LCB promoted nucleation but restrained chain movement and reduced the crystal growth rate. There was ~ 17% of crystallinity generated from a secondary crystallization. The energy barrier became significant with the LCB structure, resulting in chain diffusion limitations and lower LCB PEs overall crystallization rates than their linear counterpart. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

17.
Poly(ethylene terephthalate) (PET) was modified by regulating different contents of branching agent epoxy-based multifunctional oligomer and chain extender pyromellitic dianhydride in reactive extrusion process. The modified PET with better long-chain branched (LCB) structure boosted its rheological properties, and its enhancement of melt viscoelasticity resulted in excellent foamability in molten-state foaming process using supercritical CO2 as blowing agent. More importantly, the branched structures acted as crystal sites to accelerate the crystallization kinetic of LCB PET whether under atmospheric pressure or high-pressure CO2. The shear and elongation flow inside die further quickly induced the crystallization of LCB PET. The rapidly generated fine crystals could both introduce heterogeneous cell nucleation and suppress CO2 escape, so the cell morphology of LCB PET in continuous extrusion foaming process exhibited a three-fold increase in cell density and smaller uniform cell size with respect to those of other foam-grade PET with long-chain structure.  相似文献   

18.
Three low density polyethylenes, one long branched (A) and two linear (B and C), have been solid-state-extruded at several constant temperatures from ambient to 80°C and to draw ratios ? 8. The initial densities and melt indices of A, B, and C are 0.920, 0.920, and 0.935 g/cm3, and 1.9, 0.8, and 1.2, respectively. Melt-crystallized cylindrical billets were extruded through conical dies in an Instron Capillary Rheometer. The linear polymers were found to draw by extrusion more readily than the branched; all three strain-harden. Density, birefringence, tensile, and thermal properties have been evaluated as functions of extrusion temperature and draw ratio. Despite a measured loss via die swell, substantial orientation takes place during solid-state extrusion as evidenced by increases in transparency, birefringence, and tensile modulus (up to 4.5 times that of the original isotropic polymer). Depending on the polymer and the draw temperature, density does go through a minimum or shows a monotonic increase with draw by extrusion. A minimum in modulus is also observed at low draw and at all draw temperatures for all three polymers. The highest tensile moduli achieved are 0.73, 0.46, and 1.5 GPa for A, B, and C, respectively, at their highest draw ratio. The melting point for polymer B decreases with extrusion draw ratio, whereas it remains constant after a small initial drop, for the two others. For all three low density polyethylenes, birefringence increases rapidly with extrusion draw and then levels off at high draw. The birefringence limit is similar for A and B, i.e., 0.046 ± 0.004, but higher for C, i.e., 0.068 ± 0.009. This work extends beyond others in that it studies the effect of short as well as long branches in solid-state extrusion by comparing the linear and long branched LDPE polymers and LDPE with prior evaluations of HDPE.  相似文献   

19.
Two strategies for introducing long chain branching (LCB) to a polypropylene homopolymer (PP) are evaluated in terms of the product's molecular weight and branching distributions, and in terms of melt-state shear and extensional rheological properties. Single step processes involving radical-mediated addition of PP to triallyl phosphate are shown to generate bimodal products with highly differentiated chain populations, while a two step sequence involving PP addition to vinyltriethoxysilane followed by moisture-curing is shown to generate more uniform architectures. As a result, the sequential approach can improve low-frequency shear viscosity and extensional strain hardening characteristics while staying below the polyolefin's gel point. The composition and molecular weight distribution transformations that underlie sequential LCB techniques are discussed.  相似文献   

20.
Long‐chain branched poly(butylene succinate) were synthesized through a two‐step process of esterification and polycondensation, using 1,2,4‐butanetriol (1,2,4‐BT) as a long‐chain branching agent. The effect of long‐chain branches on the crystallization behaviors, rheological properties, and tensile properties was investigated systematically. The results of differential scanning calorimetry and polarized optical microscopy showed that with the increasing of 1,2,4‐BT segments, the crystallization temperatures and glass transition temperatures increase slightly, while the relative crystallinity degree decreases gradually. Also, the double‐banded extinction patterns with periodic distance along the radial direction were observed in the spherulites of long‐chain branched poly(butylene succinate), similar to that of linear poly(butylene succinate) (PBS). The result of wide‐angle X‐ray diffraction indicated that the incorporation of 1,2,4‐BT segments had little effect on the crystal structure of PBS. However, based on data from rheology and tensile testing, the viscoelastic properties of long‐chain branched PBS under shear flow were different from the linear PBS. For example, the complex viscosities, storage modulus, and loss modulus of long‐chain branched PBS at low frequency were significantly enhanced in comparison with those of linear PBS. In addition, long‐chain branched PBS showed higher tensile strength than that of linear PBS without notable decrease in the elongation at break when compared with linear PBS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号