首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Freeze‐dried cellulose nanocrystals (CNCs) were dispersed in the thermoplastic polyurethane [Pellethane 2363‐55D (P55D)] by a solvent casting method to fabricate CNC‐reinforced nanocomposites. This study demonstrated that the addition of small amounts (1–5 wt %) of CNCs to P55D increased the thermal degradation temperature while maintaining a similar stiffness, strength, and elongation of the neat P55D. CNC additions to P55D did not alter the glass‐transition temperature, but the onset decomposition temperature was shifted from 286 to 327°C when 1 wt % CNCs was dispersed in the matrix. The higher onset decomposition temperature was attributed to the formation of hydrogen bonds between the hydroxyl groups on the CNC surface and urethane groups in the hard block of P55D. The ultimate tensile strength and strain to failure (εf) of the nanocomposites were minimally affected by additions up to 5 wt % CNCs, whereas the elastic modulus was increased by about 70%. The observation that εf was unchanged with the addition of up to 5 wt % CNCs suggested that the flow/sliding of the hard blocks and chains were not hindered by the presence of the CNCs during plastic deformation. The ramifications of this study was that CNC additions resulted in wider processing temperatures of P55D for various biomedical devices while maintaining a similar stiffness, strength, and elongation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41970.  相似文献   

2.
This research reports the influence of the mechanical properties of thermoplastic polyurethane (TPU) as a function of wood filler percentage. Wood flour was mixed with two different chemically based TPUs. Also, moisture content during compounding process as well as the origin of moisture (wood or TPU) were studied. All experimental designs and statistical analysis were done with the software Design Expert Version 10. Composite preparation took place in a multi‐stage process. The results showed that 70% wood filler can be incorporated in the composite manufacture. The properties of the composite were mainly influenced by the proportion of wood and TPU. Wood flour increased the density, hardness, water absorption, and tensile modulus with a decrease in impact resistance and abrasion resistance of the composite. Tensile strength exhibited a decrease up to ~35% wood content, but an increase with further addition of wood. Moisture content had only a minor influence on the mechanical and water absorption properties despite the noted severe moisture sensitivity of TPU, which usually leads to decline in mechanical properties. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46344.  相似文献   

3.
Fiber fillings of wood plastic composites (WPC) are almost exclusively limited to standard plastics such as polyethylene and polypropylene. At the Kunststofftechnik Paderborn of the University of Paderborn the wood fiber filling of engineering plastics is being promoted. WPC with different fiber types and fiber contents based on two thermoplastic polyurethanes (TPU) were compounded and subsequently characterized. We found that the physicochemical properties of the materials differ from standard plastic-based WPC. Wood filling with increasing fiber content did not immediately correlate with an increase in density. A decrease in density and swelling of the compound was detected with reaching a critical fiber content. Our compounds showed an increased water absorption at high-fiber contents over time, which can be described logarithmically. The observed viscosity curves obey the Ostwald and de Waele power law, but an increased viscosity at increased fiber content was not apparent for both TPU matrices.  相似文献   

4.
A fiber-reinforced rubber composite was prepared by mixing aramid nanofibers (ANF) suspension and nitrile rubber (NBR) latex. The effects of ANF content and corresponding surface modification on the microstructure, vulcanization performance, processing and mechanical properties of composite materials, were systematically investigated. We found that, compared with commonly used short-cut aramid fibers, ANF fillers tend to form a stronger filling network within NBR matrix, resulting in a pronounced Payne effect. By improving the interfacial adhesion via dopamine (DA) coating onto ANF surface, the tensile strength can be further enhanced as expected. Besides, to eliminate the detriment of mechanical performance due to residual sodium polyacrylate in the course of flocculation, cellulose nanocrystal (CNC) was adopted to serve as a thickener during solution mixing. The incorporation of CNC can significantly improve the mechanical properties, which identifies a synergistic reinforcement effect arising from the cooperation of two types of fillers.  相似文献   

5.
Natural fibers are seeing increased use in composite applications due to their reduced cost, low density, and environmental benefits (more sustainable and lower carbon footprint). Although many natural fiber systems have been examined over the last decade, there have been relatively few studies which have compared a variety of fiber types and processing methods directly in the same experimental set. In this study, natural fiber composites made from low density polyethylene (LDPE) and a variety of Canadian based fiber feedstocks were examined including hemp bast, flax bast, chemically pulped wood, wood chips, wheat straw, and mechanically pulped triticale. The effect of fiber type, fiber fraction and maleic anhydride polyethylene (MAPE) coupling agent on the mechanical properties and long‐term moisture absorption behavior was quantified. In general, addition of natural fiber to LDPE results in an increase in modulus (stiffness) with a corresponding loss of material elongation and impact toughness. Of the fiber types tested, composites made from chemically pulped wood had the best mechanical properties and the least moisture absorption. However, the use of MAPE coupling agent was found to significantly increase the mechanical performance and reduce moisture absorption for all other natural fiber types. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 969‐980, 2013  相似文献   

6.
The present study focuses on the isolation and characterization of the cellulose nanocrystals (CNCs) from the pineapple peel waste (PPW) (agro-waste) and sisal fiber (SiF) (natural fiber) employing the acid hydrolysis method, and its comparison with the commercially available CNCs (CNC-C). Furthermore, the CNCs from PPW, SiF, and CNC-C were subjected to transmission electron microscopy (TEM), Fourier transform electron microscopy, X-ray diffraction, particle size distribution, and zeta potential analysis. The studied properties of the isolated CNCs are considerably different from the PPW and SiF. The CNCs so formed have been estimated by TEM to be around 10–40 nm wide and length of several micrometers. Fourier transform electron microscopy studies described the removal of the noncellulosic components like lignin, hemicellulose, and pectin substances from the base materials in both the cases by employing acid hydrolysis method. Additionally, nanocomposites of CNC isolated from PPW along with polypropylene (PP) matrix were fabricated using melt blending method followed by injection molding. Maleic anhydride grafted PP (MAPP) acts as a compatibilizer for improving the dispersibility of hydrophilic CNC within the nonpolar PP matrix. The addition of CNC (3 wt%) along with MAPP at 5 wt% showed optimum tensile strength and modulus to the tune of 10.39 and 25.53%, respectively, when compared to their counterparts without MAPP. Dynamic mechanical analysis revealed an increased stiffness of PP in its nanocomposite system due to the addition of CNC. Scanning electron microscopy studies revealed uniform distribution of CNC within the nonpolar PP matrix in the presence of MAPP.  相似文献   

7.
Technical and hygienic nonwovens, originating typically from fossil-based synthetic polymers, are the fastest growing applications in the textile industry. Recently developed thermoplastic cellulose fatty acid esters have polyolefin like rheology properties and therefore the suitability of these cellulose esters for fiber production was evaluated. In this study, the melt spinning of textile fibers has been demonstrated using thermoplastic cellulose octanoate. The mechanical properties of melt spun fibers were analyzed by using tensile testing and both the surface and cross-section morphology of melt spun fibers were studied using the scanning electron microscopy. The surfaces of the fibers were very smooth and also the cross-section was very uniform and no porosity was observed. While mechanical properties of the produced fibers are not yet as good as those reported for commercial polypropylene (PP) monofilament fibers, they are somewhat more comparable to other cellulose ester-based fibers. The melt spinning results indicate that the novel cellulose-based fibers can provide a renewable and recyclable alternative, for example, spun-laid PP in several hygienic textile and fully oriented in technical applications in future.  相似文献   

8.
Six fillers from forestry wastes (wood, bark, cones and needles from young pine trees, kraft lignin, and recycled paper sludge from industry wastes) were incorporated into polyurethane (PU)‐based foams prepared via free‐rise pouring method. Variable filler contents (1, 5, and 10 wt %) and NCO/OH ratios (0.6, 0.9, and 1.2) were investigated. A simple mixture (1:3) of castor oil and crude glycerin (byproduct from biodiesel production) was used as biobased polyol. The foam composites were investigated through spectroscopy, morphological, mechanical, and hygroscopic analyses. The addition of fillers decreased water uptake and yielded rigid PU systems with more homogenous cell structure. The 1% and 5% reinforcement wood were the most effective among the studied compositions, with better mechanical and hygroscopic performance, probably due the higher compatibility of the wood with the PU system, which promote urethanic bonds between filler and isocyanate, as indicated by wet chemical results and micrographs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45684.  相似文献   

9.
Biomass-based composites with renewability and biodegradability have attracted extensive researches, but their applications are hindered by poor mechanical properties and flame retardancy. Cellulose ester matrix composites (CEMC), a kind of biomass-based composites, were prepared with inorganic crystals as flame retardant and reinforcement. Cellulose acetate oleate (CAO) prepared by mechanical activation-assisted solid-phase reaction was used as thermoplastic matrix. Hydrophobic oleate-magnesium hydroxide (O-MH), which was surface-modified with oleic acid, was embedded into CAO to prepare O-MH/CAO composites by hot pressing. The introduction of oleoyl contributed to favorable thermoplasticity of cellulose ester, resulting in enhanced thermal stability and mechanical properties of CEMC. The uniform dispersion of O-MH in the CAO matrix via metal–organic coordination increased the mechanical properties and flame retardancy of O-MH/CAO composites, ascribing to the toughening effect and combustion inhibition effect induced by O-MH. This study provides a feasible technology for fabricating the CEMC with outstanding thermal stability and mechanical properties.  相似文献   

10.
This work analyzes the differences in the final properties of two waterborne polyurethanes (WBPU) prepared with two macrodiols of different chemical structure, but similar molecular weight, as well as the variations caused by incorporating low percentages of microfibrillated cellulose nanocrystals. One of the polyurethanes was based on a synthetic but biodegradable precursor (polycaprolactone diol, PCL) and a second one based on a bio‐based macrodiol derived from castor oil (CO1). The bio‐based material presented higher mechanical properties at room temperature than the synthetic one, with the Young's modulus (MPa) ranging from 2.23 ± 0.09 to 84.88 ± 0.96 for the PCL and bio‐based WBPUs, respectively. Additionally, the PCL‐based WBPU showed to be more sensitive to the incorporation of cellulose than the bio‐based WBPU, and it also suffered changes during time due to delayed crystallization. The behavior of the two systems were compared and related to the different structure of the macrodiols that led to different interfacial interactions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44207.  相似文献   

11.
Cellulose microfibers (CMFs) having surfaces modified with polydopamine (PDPA) and octadecylamine (ODA) were prepared, and their reinforcing abilities for polypropylene (PP) were investigated. The PDPA coating was made via self-polymerization of dopamine (P-CMF), and subsequent alkylation was conducted by the reaction with ODA (OP-CMF). The modified CMFs exhibited improved dispersibility in the PP matrix due to the reduced hydrophilicity. The OP-CMF/PP composite prepared by batch mixing had a higher tensile modulus compared to that for the pure PP and composites with unmodified CMFs. However, excess alkylation lowered the tensile modulus, and the presence of an optimal degree of alkylation was demonstrated. The CMF/PP-IM composites fabricated by injection molding exhibited improved tensile properties compared to those prepared by batch mixing. Both the tensile modulus and yield stress were increased by increasing the CMF content and improved by the surface modification of the CMFs.  相似文献   

12.
In this work, poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) were crosslinked using sodium tetraborate decahydrate (borax) to improve the mechanical and thermal properties of the neat PVA. The results showed that the CNCs affected the crystallization behavior of the crosslinked PVA. The crystallization temperature of the crosslinked PVA with CNCs increased considerably from ~152 to ~187 °C. The continuous improvement of the thermal stability was observed with the increasing content of CNCs in the crosslinked PVA films. Additionally, the strong interaction between the CNCs and PVA was theoretically estimated from the Young's modulus values of the composites. Thermodynamic mechanical testing revealed that the crosslinked PVA composite films with CNCs could bear higher loads at high temperature compared to the films without the CNCs. At 60 °C, 2.7 GPa was reported for the storage modulus of the crosslinked composites with 3 wt % of CNCs, twice as high as that for the crosslinked films without CNCs. Moreover, creep results were improved when CNCs were added in the crosslinked nanocomposites. The materials prepared in this work could broaden the opportunities for applications in a wide range of temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45710.  相似文献   

13.
The fabrication of nanocomposites of polyamide 12 (PA12) and cellulose nanocrystals (CNCs) isolated from cotton and tunicates is reported. Through a comparative study that involved solution‐cast (SC) and melt‐processed materials, it was shown that PA12/CNC nanocomposites can be prepared in a process that appears to be readily scalable to an industrial level. The results demonstrate that CNCs isolated from the biomass by phosphoric acid hydrolysis display both a sufficiently high thermal stability to permit melt processing with PA12, and a high compatibility with this polymer to allow the formation of nanocomposites in which the CNCs are well dispersed. Thus, PA12/CNC nanocomposites prepared by melt‐mixing the two components in a co‐rotating roller blade mixer and subsequent compression molding display mechanical properties that are comparable to those of SC reference materials. Young's modulus and maximum stress could be doubled in comparison to the neat PA12 by introduction of 10% (CNCs from tunicates) or 15% w/w (CNCs from cotton) CNCs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42752.  相似文献   

14.
A rapeseed oil‐based polyol (ROPO) was synthesized using chemical modification of the rapeseed oil (RO) by epoxidation reaction followed by oxirane ring‐opening with diethylene glycol. The ROPO was used in the formulation of low‐density green polyurethane (PU) foams. The use of glycerol as hydroxyl component, water as a reactive blowing agent and micro/nanocellulose (MNC) as a reinforcement increases the content of natural components in the formulations with important effects on the final foam properties. The ROPO and their intermediate products are characterized by analytical techniques and FTIR spectroscopy, while the final PU foams are characterized by morphological and mechanical analysis. The results show that the addition of glycerol increases the modulus and yield stress. The incorporation of MNC in small amounts is enough to increase the modulus at low temperatures. Both modifiers cause an increase in water absorption and the fragility of the cell walls, reflected in the micrographs of the foams. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41602.  相似文献   

15.
Traditional commodity polymers are widely used in several disposable or short‐life items and take hundreds of years to decompose in nature. These polymers could be replaced in several uses by biodegradable polymers, like polybutylene adipate‐co‐terephthalate (PBAT) studied in this work. For this, nonetheless, it is necessary to improve some of the PBAT properties, like mechanical resistance and barrier properties. In this work, cellulose nanocrystals (CNC) were incorporated in PBAT with this intention, through melt extrusion. Aiming to avoid CNC aggregation during the drying and extrusion process, a CNC chemical modification with phenylbutyl isocyanate was done. It was possible to obtain PBAT‐CNC melt extruded composites with an elastic modulus 55% higher and water vapor permeability 63% lower than the values of the pure polymer, without compromising PBAT biodegradation. Therefore, the composites prepared with these enhanced properties have great potential as substitutes for traditional commodity polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43678.  相似文献   

16.
Cyclotrimethylenetrinitramine (RDX)-based high-energy explosives are widely used in weapon warheads, propellants, and ammunition. Many studies have explored different supporting structures for RDX; however, the use of natural materials have rarely has been reported. Natural cellulose is widely known for its excellent compatibility and loading capacity. In this study, cellulose was used as a supporting structure and insensitive material for RDX composites. Cellulose/RDX composite aerogels (RCAs) were prepared using 1-allyl-3-methyl imidazole (AMIMCl) as the solvent, and their properties were characterized. The results show that the content of nitrogen in cellulose/RCAs was 34.5%, and the content of RDX was as high as 94.3%. Moreover, RDX particles were attached to the fibers inside the cellulose aerogels (CAs), forming a homogeneous protective layer on the surface of the cellulose matrix. Compared with the raw RDX material, the thermal stability of the cellulose/RDX energetic aerogels was greatly increased. The porosity of the CAs was reduced due to RDX particles growing inside the CAs. The impact sensitivity increased from 35 to 78 cm.  相似文献   

17.
In this study, the effect of Eucalyptus globulus wood (UE) used as a filler (5–20% w/w) on the physical and thermal properties of high-density polyethylene (HDPE) composites was evaluated. To improve the compatibility with HDPE, the wood was modified (TE) using crude glycerol derived from biodiesel production. The addition of 20% (w/w) of UE or TE led to more rigid and durable composite materials compared to neat HDPE (about 50 or 100% increase in tensile strength, respectively). Composites also revealed 55–75°C higher temperatures at maximal degradation rates. The advantageous behavior of TE over UE in composites was attributed to the improvement of surface morphology of modified wood and it is better compatibility with the HDPE as revealed by surface energy analysis. The changes in wetting behavior of HDPE and ensuing HDPE-TE composites (contact angles of ca 72 and 80°, respectively) explain the matrix-filler interactions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48619.  相似文献   

18.
Construction of environment-friendly biomass-based nanocomposites with high performance is in great demand for developing of a sustainable low-carbon society. Here, transparent and flexible regenerated cellulose (RC)/layered double hydroxide (LDH) nanocomposite films were prepared from aqueous NaOH/urea solutions. The obtained nanocomposite films were characterized using AFM, SEM, FTIR, XRD, tensile testing, water contact angle, and thermogravimetric analysis. The results show that LDH nanoplatelets were individually dispersed with a thickness of 1 nm and surface diameter of 100 nm after ultrasonic treatment. Strong interaction existed between LDH nanoplatelets and cellulose molecules, leading to the improved thermal stability and mechanical strength of RC together with the original good properties of LDH. In particular, the nanocomposite films with 10 wt% LDH showed a 135% and 234% increase in the tensile strength and Young's modulus than those of the neat RC film. Meanwhile, the nanocomposite films exhibited high transparency. Therefore, these RC/LDH nanocomposites are promising in the fields of high-performance packaging materials, flexible display panels, and high-temperature dielectric materials.  相似文献   

19.
Alfa fiber/polypropylene composites were manufactured using twin-screw extrusion. Fibers were extracted using alkaline and steam explosion methods. Three chemical treatments were also applied to the alkaline-extracted fibers: stearic acid (SA), and potassium permanganate dissolved in water (KW) and in acetone (KA). Finally, thermal annealing was applied to the composites. The results indicate that composites with steam-exploded fibers had a significantly higher melt flow index than composites with alkaline-extracted fibers. Moreover, the incorporation of fibers into the matrix increased the Young's modulus, where the optimum results were obtained utilizing the alkaline-extracted fibers. Both extraction methods also significantly decreased the water uptake, especially the steam explosion. The three chemical treatments increased the melt flow index and conversely decreased the tensile strength and Young's modulus. In addition, KW treatment decreased the water uptake. Finally, thermal annealing increased the tensile strength and Young's modulus of composites with SA-treated fibers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47392.  相似文献   

20.
Five different grades of maleic anhydride polypropylene (MAPP) having different molecular weight and acid value (AV) were used as coupler in PP‐nanocrystalline cellulose (NCC) composites. The main objective was to study the effect of MAPP structure (Mw, AV) and filler/coupler (F/C) ratio on mechanical properties in order to find optimum mechanical properties in tension, flexion, and impact. Results showed that both Mw and AV have direct effect on mechanical properties and a balance between both must be achieved to get the best performance. However, regardless of MAPP structure, optimum improvement was obtained for F/C = 7.5/1. Shear rheological data showed that at high MAPP content, MAPP acts as lubricant. DSC and AFM analysis showed small reduction in the size of PP crystals in the presence of NCC. Rheological data under large amplitude oscillatory shear showed that the nanocomposites used here are under percolation. Using these analyses, possible reinforcement mechanisms were investigated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42438.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号