首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of novel phenylethynyl‐endcapped polyimide oligomers were prepared by polycondensation of an aromatic diamine mixture of 1,3‐bis(4‐aminophenoxy) benzene (1,3,4‐APB) and 3,4′‐oxydianiline (3,4′‐ODA) with different aromatic dianhydrides including 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐(hexafluoro isopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 4,4′‐[2,2,2‐trifluoro‐1‐(3′,5′‐bis‐(trifluoro‐methyl)phenyl)ethylidene]diphthalic anhydride (9FDA) in the presence of 4‐phenyl‐ethynylaniline (PEA) as endcapping agent in aprotic solvent at elevated temperature. The chemical structures, thermal behavior, and melt rheological properties of the synthesized polyimide oligomers were investigated. Experimental results indicated that the fluorinated polyimide oligomers derived from 6FDA (PI‐2) and 9FDA (PI‐4) are amorphous solid resins and exhibited lower melt viscosities than those prepared from the unfluorinated aromatic dianhydrides such as BPDA and ODPA. The BPDA‐based polyimide oligomers with a molar ratio of 1,3,4‐APB/3,4′‐ODA = 50:50 (PI‐5) showed lower melt viscosity than those derived from a mixture of 1,3,4‐APB and 3,4′‐ODA with molar ratios of 75:25 and 100:0, respectively. In addition, the melt viscosity of the polyimide oligomers increased obviously with increasing of the polymer calculated molecular weights. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

2.
A series of thermal insulation, acoustic absorption isocyanate‐based lightweight polyimide (PI) foams with 4,4′‐diaminodiphenyl ether (ODA) units were prepared from polyaryl polymethylene isocyanate (PAPI) and the esterification solution derived from pyromellitic dianhydride (PMDA) and ODA. The structures and properties of the PI foams prepared with different molar ratio of ODA/PMDA were investigated in detail. The results show that the ODA units have great influence on the foam properties. With the increase of the ODA units, the density decreases firstly and then increases. When the molar ratio of ODA/PMDA is 3/10, the foam reaches the minimum density (13.7 kg/m3). Moreover, with increasing the ODA units, the acoustic absorption properties increase firstly and then decrease owing to the variation of the average cell diameter of the PI foams. All PI foams show excellent thermal stability, and the 5% and 10% weight loss temperature are in the range of 250–270 °C and 295–310 °C, respectively. In addition, the PI foams present low thermal conductivity and thermal diffusivity. Furthermore, the mechanical property was also evaluated and the compressive strength of the PI foams is in the range of 33.0–45.7 kPa. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46029.  相似文献   

3.
In this article, a new alicyclic‐functionalized diamine, 1,3‐bis(4‐aminophenoxymethylene)‐1,2,2‐trimethylclopentane (BAMT) was successfully synthesized starting from natural —(D)‐camphor through four reaction steps of oxidation to offer a dicaboxylic acid, reduction to offer a diol, nucleophilic substitution to give a dinitro compound and then reduction to give the final diamine. Two alicyclic‐containing polyimides were prepared by polycondensing BAMT with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐oxydiphthalicanhydride (ODPA), respectively. For the studies of the structure–property relationships of the polyimides, one aromatic polyimide of 4, 4′‐oxydianiline (ODA) polycondensed with ODPA was prepared in comparison. The alicyclic‐containinig polyimides PI (BPDA‐BAMT) and PI (ODPA‐BAMT) maintain good thermal properties with glass transition temperatures (Tg) of 257°C and 240°C, and temperatures at 5% weight loss (T5) of 443°C and 436°C in nitrogen, respectively. The alicyclic polyimides exhibit tensile strengths of 91.9–133 MPa, Young's moduli of 2.75—3.24 GPa, and elongations at break of 5.6–18%. Compared with the aromatic polyimide PI (ODPA‐ODA), PI (ODPA‐BAMT) shows improved transparency with the UV‐Vis transmittance at 500 nm over 80%. In addition, PI (ODPA‐BAMT) displays better solubility than PI (ODPA‐ODA), which has been confirmed by the bigger d‐spacing value of PI (ODPA‐BAMT) than that of PI (ODPA‐ODA) calculated from the Wide‐angle X‐ray Diffraction spectra. This study indicates that the renewable forestry compound, such as natural —(D)‐camphor, could be a good origin for the structural designing and preparation of alicyclic‐containing polyimides with outstanding combined features suitable for advanced microelectronic and optoelectronic applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
A novel polyimide (PI) hybrid nanocomposite containing polyhedral oligomeric silsesquioxane (POSS) with well defined architecture has been prepared by copolymerization of octakis(glycidyldimethylsiloxy)octasilsesquioxane (Epoxy-POSS), 4,4′-oxydianiline diamine (ODA), and 4,4′-carbonyldiphthalic anhydride (BTDA). In these nanocomposite materials, the equivalent ratio of the Epoxy-POSS and ODA are adjustable, and the resultant PI-POSS nanocomposites give variable thermal and mechanical properties. More importantly, we intend to explore the possibility of incorporating POSS moiety through the Epoxy-POSS into the polyimide network to achieve the polyimide hybrid with lower dielectric constant (low-k) and thermal expansion. The lowest dielectric constant achieved of the POSS/PI material (PI-10P) is 2.65 by incorporating 10 wt% Epoxy-POSS (pure PI, k=3.22). In addition, when contents of the POSS in the hybrids are 0, 3, 10 wt% (PI-0P, PI-3P, PI-10P), and the resultant thermal expansion coefficients (TEC) are 66.23, 63.28, and 58.25 ppm/°C, respectively. The reduction in the dielectric constants and the resultant thermal expansion coefficients of the PI-POSS hybrids can be explained in terms of creating silsesquioxane cores of the POSS and the free volume increase by the presence of the POSS-tethers network resulting in a loose PI structure.  相似文献   

5.
Optical second harmonic generation (SHG) was applied to monitor the growth of films of polyamic acid on polycrystalline gold substrates. Different diamines such as 4,4′-oxydianiline (ODA), 4,4′-diaminodiphenyl disulfide (DAPS) and 4,4′-diaminobiphenyl (benzidine) were codeposited from the gas phase with pyromel-litic dianhydride (PMDA). Depending on the diamine, the second harmonic signal varies differently during formation of the polymer/metal interface and the subsequent film growth. A three-layer model which takes into account the optical properties of thin films reveals that the shape of the thickness-dependent SH signal is related to the orientation of the molecules in the film. A fit of the experimental data based on the model indicates a structural transition that occurs several tens of nanometers above the substrate for PMDA/ODA and PMDA/DAPS. The experiments demonstrate that SHG can be applied to monitor the growth of thin films and to extract structural information.  相似文献   

6.
In this research, a series of porous copolyimide (co‐PI) films containing trifluoromethyl group (CF3) were facilely prepared via a phase separation process. The co‐PI were synthesized by the reaction of benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride (BTDA) with two diamines of 4,4′‐diaminodiphenyl ether (ODA) and 3‐trifluoromethyl‐4,4'‐diaminodiphenyl ether (FODA) with various molar ratios. The flexible and tough porous co‐PI films with about 300 μm thickness and 8~10 μm average diameter could be obtained by solution casting conveniently. The thermal properties of the obtained porous co‐PI films were excellent with a glass transition temperature at 270 °C ~ 280 °C and only 5% weight loss in temperature from 530 °C to 560 °C under nitrogen atmosphere. In addition, the dielectric and hydrophobic properties of porous co‐PI films were remarkably improved owing to the presence of trifluoromethyl groups (CF3) in the polymer chains. Moreover, our synthesized porous co‐PI films also showed good mechanical properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44494.  相似文献   

7.
A series of inherently heat‐sealable copolyimides (CPIs) with high glass transition temperatures were synthesized from 2,3,3′,4′‐oxydiphthalic anhydride (aODPA) and bicomponent diamines, 4,4′‐oxydianiline (ODA) and para‐phenylenediamine (PDA). The PI chain rigidity was manipulated by the regulation of the diamine ratio, and its effects on the heat sealability and thermal resistance of the derived CPI films were investigated in detail. The results show that these films are in possession of both good heat sealability and thermal resistance due to the synergetic effect of the asymmetry of aODPA and the rigidity of PDA. It is also found that there exists one critical PDA content that distinguishes the heat‐sealing behaviors of the CPI films, and the relevant mechanism was established. Especially for CPI‐5, the heat‐sealing strength is up to 350 N m?1 simultaneously with a relatively high Tg of 310°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43058.  相似文献   

8.
Three new siloxane containing grafted copolyimides have been prepared by one‐pot solution imidization technique. The polymers are made by the reaction of 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) with commercially available diamine 4,4′‐oxydianiline (ODA) with variation of silicon containing diamine, namely 3,5‐diaminobenzoate terminated polydimethylsiloxane (DBPDMS), as a comonomer to 10, 20, and 30 wt %. The films of the polymers were prepared by casting the polymer solution in dichloromethane. The polymers have been well‐characterized by GPC, IR, and NMR techniques. Thermal stabilities and decomposition behavior of the copolyimides were studied by DSC and TGA. The water contact angle values of the films indicate hydrophobic nature of the polymers. Thermal, flame retardant, mechanical, and surface properties of these polymers have been compared with the homopolyimide and with polyimides where polysiloxane is incorporated in the main chain. DSC revealed melting of the grafted siloxane chain at sub‐ambient temperature and a glass transition corresponding to the main polymer chain above 200°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
High‐performance copolyimide (co‐PI) fibers were prepared via the wet spinning process of co‐polyamide acid precursors based on 3,3′,4,4′‐biphenyldianhydride (BPDA) and a mixture of three diamines namely p‐phenylene diamine (p‐PDA), 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (BIA), and 4,4′‐oxidianiline (ODA), followed by drawing and imidization at high temperatures. Effects of the ODA and BIA contents on the molecular packing, morphology, hydrogen‐bonding interactions, mechanical and thermal properties of the prepared fibers were investigated. The mechanical properties of the co‐PI fibers were improved with the addition of ODA and BIA, and they reached the optimum tensile strength of 2.7 GPa and modulus of 94.3 GPa. Wide‐angle X‐ray diffraction results (WAXD) showed that the co‐PI fibers exhibited highly oriented structure along the fiber direction with low degree of lateral packing orders in the transverse direction. Two‐dimensional small‐angle X‐ray scattering (2D‐SAXS) revealed that the incorporation of ODA resulted in the reduction in radius, length, misorientation, and internal surface roughness of the microvoids in the fibers. Fourier transform infrared (FTIR) results indicated that hydrogen‐bonding formed between the BIA and cyclic imide units effectively strengthened the intermolecular interactions. The co‐PI fibers exhibited excellent thermal and thermal‐oxidative stability, with a 5%‐weight‐loss temperature of 578°C under N2 and 572°C in air. POLYM. ENG. SCI., 55:2615–2625, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
改变AB型单体3-氨基-5,6,9,10-四氢-[5]螺旋烯-7,8-二羰基-二甲酸酐(ATHDA)的用量,使之与4,4''-(4,4''-异亚丙基二苯氧基)双(邻苯二甲酸酐)(BPADA)和2-氨基二苯醚(ODA)共聚,制备出一系列ATHDA结构单元含量不同的聚醚酰亚胺PEI-ABx(x分别为0%、5%、10%、15%、20%,表示以BPADA和ODA的总质量为基准计算得到的ATHDA的投料比)。采用FTIR、1HNMR、DSC、DMA、TGA 等对聚合物进行了表征。结果表明,所制备的PEI-ABx特性粘度在0.60~0.87 dL/g之间,均具有良好的成膜性,且该系列聚合物均具有优异的溶解性;由DMA所测得的玻璃化转变温度(Tg)在228~256 °C之间,N2气氛下5%的热失重温度(T5%)为505~536 °C,表明PEI-ABx具有优异的热稳定性;聚合物薄膜的拉伸强度、杨氏模量和断裂伸长率分别在41.7~88.1 MPa、1.7~2.7 GPa 和3.3%~4.8%的范围内,具有良好的机械性能。另外,聚合物分子链中的四氢-[5]螺旋烯结构可脱氢芳香化, PEI-AB20%脱氢芳香化后的聚合物Tg从256 °C提高至283 °C, T5%从531 °C提升至557 °C,表明芳香化后的聚合物耐热性得到进一步提升。  相似文献   

11.
Two 4,4′‐oxydiphthalic anhydride (ODPA)‐based polyimide (PI)/titania hybrid films with different morphologies were prepared through an in situ sol‐gel process. The precursor, poly(amic acid) (PAA), was synthesized using ODPA, diamine of 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) or 4,4′‐diaminodiphenyl ether (ODA) and a suitable amount of dimethylformamide solvent. A mixture of tetraethylorthotitanate (Ti(OEt)4) and acetylacetone with molar ratio of 1:4 was then added to the PAA solution and mixed thoroughly. Following curing, PI/titania hybrid membranes with different crosslinkages and Ti(OEt)4 contents were prepared. PI hybrids with the longer BAPP diamine present different morphologies and property changes related to the Ti(OEt)4 content from those of hybrids with the shorter ODA diamine. The morphologies of the two ODPA‐based PI/titania hybrids were studied with reference to the disruption of imide ring formation. Different crosslinked structures produced were identified using Fourier transform infrared analysis from the frequency shift of the C?O band and relative absorbance intensities of bands of C?O group and imide ring (? N?). Thermal properties, O2/N2 gas separation performance, contact angle, storage modulus, glass transition temperature and decomposition temperature of the PI hybrids were all found to be functions of the Ti(OEt)4 content, crosslinked structure and PI type. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
The copolyimide (co‐PI) fibers with outstanding mechanical properties were prepared by a two‐step wet‐spinning method, derived from the design of combining 4,4′‐oxydianiline (ODA) with the rigid 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)/p‐phenylenediamine (p‐PDA) backbone. The mechanical properties of PI fibers were drastically improved with the optimum tensile strength of 2.53 GPa at a p‐PDA/ODA molar ratio of 5/5, which was approximately 3.7 times the tensile strength of BPDA/p‐PDA PI fibers. Two‐dimensional wide‐angle X‐ray diffraction indicated that the highly oriented structures were formed in the fibers. Two‐dimensional small‐angle X‐ray scattering revealed the existence of the needle‐shaped microvoids aligned parallel to the fiber axis, and the introduction of ODA led to the reduction in the size of the microvoids. As a result, the significantly improved mechanical properties of PI fibers were mainly attributed to the gradually formed homogeneous structures. The co‐PI fibers also exhibited excellent thermal stabilities of up to 563°C in nitrogen and 536°C in air for a 5% weight loss and glass transition temperatures above 279°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42474.  相似文献   

13.
王劲  曾晓丹  王剑  顾宜 《中国胶粘剂》2006,15(11):18-21
制备了挠性印制电路中铜箔与聚酰亚胺基材间的聚酰亚胺粘接材料,由醚酐、脂肪族二胺和4,4’-二氨基二苯醚(ODA)或杂环芳香二胺共聚得到的聚酰亚胺薄膜的成膜性很好。通过红外分析,含ODA聚酰亚胺和含杂环聚酰亚胺薄膜已酰亚胺化完全。其力学性能较好。通过DSC分析,含ODA聚酰亚胺的玻璃化转变温度为141℃,结晶熔融温度为212℃;含杂环聚酰亚胺的玻璃化转变温度为136℃,并在225℃出现了一个吸热峰。采用含ODA或杂环聚酰亚胺胶粘剂制备的双面挠性印制电路基板的平均剥离强度为828.66N/m及710.98N/m。  相似文献   

14.
Abstract

A family of random co-poly(amic acid)s containing 4,4′-oxydianiline (ODA) moiety were synthesised in N,N′-dimethylacetamide. The co-poly(amic acid) solutions were used as spinning dope for dry jet wet spinning process into as spun poly(amic acid) (PAA) fibres. The polyimide (PI) fibres were obtained from PAA fibres after being imidised and drawn in furnace. The processability and mechanical properties of the fibres were notably improved by incorporating ODA into 3,3′,4,4′-biphenyltetracarboxylic dianhydride/p-phenylenediamine (BPDA/PPD) backbone. The best strength and modulus of BPDA/PPD/ODA PI fibre (diamine mole ratio of PPD/ODA?=?85∶15) attained 2·25 and 96·5 GPa respectively, which were approximately three times the tenacity of the BPDA/PPD PI fibre. The SEM image showed that the cross-section of each stage fibres was round and void free. In addition, ‘skin–core’ and microfibrillar structure were not observed. The thermal properties of PI fibres were also investigated. The results showed that the PI fibres have excellent thermal stability; moreover, the dimensional stability and structural homogeneity of the fibres were significantly improved by heat drawn stage. Tg was found to be ~290°C by thermomechanical and dynamic mechanical analyses. The X-ray (wide angle X-ray diffraction and small angle X-ray scattering) experiments indicated that the ordering degree of longitudinal and lateral stacks, as well as the molecular orientation of PI fibre, was improved in the preparation process of fibres. Furthermore, the mechanical properties of fibres are profoundly affected by the heat drawn conditions.  相似文献   

15.
2,2′‐Position aryl‐substituted tetracarboxylic dianhydrides including 2,2′‐bis(biphenyl)‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride and 2,2′‐bis[4‐(naphthalen‐1‐yl)phenyl)]‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride were synthesized. A new series of aromatic polyimides (PIs) were synthesized via a two‐step procedure from 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride and the newly synthesized tetracarboxylic dianhydrides monomers reacting with 2,2′‐bis[4′‐(3″,4″,5″‐trifluorophenyl)phenyl]‐4,4′‐biphenyl diamine. The resulting polymers exhibited excellent organosolubility and thermal properties associated with Tg at 264 °C and high initial thermal decomposition temperatures (T5%) exceeding 500 °C in argon. Moreover, the fabricated sandwich structured memory devices of Al/PI‐a/ITO was determined to present a flash‐type memory behaviour, while Al/PI‐b/ITO and Al/PI‐c/ITO exhibited write‐once read‐many‐times memory capability with different threshold voltages. In addition, Al/polymer/ITO devices showed high stability under a constant stress or continuous read pulse voltage of ? 1.0 V. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
To explore ultralow dielectric constant polyimide, the crosslinked polyimide foams (PIFs) were prepared from 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), 4,4′‐oxydianiline (ODA), and 2,4,6‐triaminopyrimidine (TAP) via a poly(ester–amine salt) (PEAS) process. FTIR measurements indicated that TAP did not yield a negative effect on imidization of PEAS precursors. SEM measurement revealed the homogeneous cell structure. Through using TAP as a crosslinking monomer, the mechanical properties of PIFs could be improved in comparison with uncrosslinked BTDA/ODA based PIF. The crosslinked PIFs still exhibited excellent thermal stability with 5% weight loss temperatures higher than 520°C. In the field with frequency higher than 100 Hz, the dielectric constants of the obtained PIFs ranged from 1.77 to 2.4, and the dielectric losses were smaller than 3 × 10?2 at 25–150°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1734–1740, 2006  相似文献   

17.
In this research, a new flexible polyimide (PI) foams was successfully prepared and characterized based on precursor powder foaming. This foams were derived from 3,3',4,4'‒oxydiphethalic anhydride (ODPA), 3,3',4,4'‒oxydiphethalic tetraacid (ODPA‒tetraacid), and 4,4'‒oxydianiline (4,4'‒ODA). With varying molar percentage of ODPA‒tetraacid in (ODPA + ODPA‒tetraacid), the changes of properties of PI precursor powders and PI foams were comparatively investigated. The foaming processes of PI foams were observed by a self‒made visualization device. The decomposition products of precursor powders were analyzed by thermogravimetry‒Fourier transform infrared spectroscopy (TG‒FTIR). The crystallinity of precursor powders was investigated by wide‒angle X‒ray diffraction (WXRD). The chemical structure of PI precursor powders and foams was analyzed by FTIR. The thermal properties of PI foams were tested by the methods of dynamic mechanical analysis (DMA), and TG/differential thermogravimetry (DTG) analysis. The cell structure of PI foams was observed by a scanning electron microscopy. The rebound resilience of PI foams was studied by a self‒made drop‒ball instrument. With the increasing of ODPA‒tetraacid, the inflation onset temperatures and inflation degrees of PI foams decreased from 210°C to 118°C and increased from 10 to 14.8 times, respectively. The crystallinity of PI precursor powders increased. The thermal stability of PI foams decreased. The cell structure of PI foams became more uniform and the rebound rates increased linearly. Besides, ODPA‒tetraacid did not yield any negative effect on the complete imidization of the PI precursor powder by the FTIR spectra. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Two binary polyimide (PI) blends having a common monomer, diamine and dianhydride, were prepared. The first system was composed of PIs obtained from an alicyclic and flexible dianhydride, namely 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic acid anhydride (DOCDA) and two aromatic diamines, 4,4′‐oxydianiline (ODA) and p‐phenylenediamine (PPD), respectively. In the second system, ODA was combined with DOCDA and (hexafluoroisopropyldiene)diphtalic dianhydride (6FDA). Incorporation of aliphatic and asymmetric DOCDA moieties, hexafluoropropyldiene groups and ether linkages in the molecular structure of PI blends, poly(DOCDA/PPD)/poly(DOCDA‐ODA) and poly(6FDA‐ODA)/poly(DOCDA‐ODA) influenced the surface tension parameters, surface and interfacial free energy, and the work of spreading of water, maintaining the surface hydrophobic characteristics of both systems. In addition, it has been found out that surface hydrophobicity and surface roughness are properties that can be correlated with the red blood cells and platelets compatibility. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

19.
Two new aromatic diamines, 2,2′‐dibromo‐4,4′‐oxydianiline (DB‐ODA 4 ) and 2,2′,6,6′‐tetrabromo‐4,4′‐oxydianiline (TB‐ODA 5 ), have been synthesized by oxidation, bromination, and reduction of 4,4′‐oxydianiline (4,4′‐ODA). Novel polyimides 6a–f and 7a–f were prepared by reacting DB‐ODA ( 4 ) and TB‐ODA ( 5 ) with several dianhydrides by one‐step method, respectively. The inherent viscosities of these polyimides ranged from 0.31 to 0.99 dL/g (0.5 g/dL, in NMP at 30°C). These polyimides showed enhanced solubilities compared to those derived from 4,4′‐oxydianiline and corresponding dianhydrides. Especially, polyimides 7a , derived from rigid PMDA and TB‐ODA ( 5 ) can also be soluble in THF, DMF, DMAc, DMSO, and NMP. These polyimides also exhibited good thermal stability. Their glass transition temperatures measured by thermal mechanical analysis (TMA) ranged from 251 to 328°C. When the same dianhydrides were used, polyimides 7 containing four bromide substituents had higher glass transition temperatures than polyimides 6 containing two bromide substituents. The effects of incorporating more polarizable bromides on the refractive indices of polyimides were also investigated. The average refractive indices (nav) measured at 633 nm were from 1.6088 to 1.7072, and the in‐plane/out‐of‐plane birefringences (Δn) were from 0.0098 to 0.0445. It was found that the refractive indices are slightly higher when polyimides contain more bromides. However, this effect is not very obvious. It might be due to loose chain packing resulted from bromide substituents at the 2,2′ and 2,2′,6,6′ positions of the oxydiphenylene moieties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
A series of co‐polyimide/attapulgite (co‐PI/AT) nanocomposites have been successfully fabricated from anhydride‐terminated polyimide (PI) and γ‐aminopropyltriethoxysilane (APTES)‐modified fibrous attapulgite (AT). Co‐PI was prepared from 4,4′‐diaminodiphenyl ether (ODA), 4,4′‐oxydiphthalic anhydride (ODPA), and 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride (BPADA) by using the method of chemical imidization. Different amount of AT (0, 1, 3, 5, 7 wt%) were introduced into co‐PI via strong covalent interactions between terminal anhydride and amino groups. The properties of co‐PI/AT nanocomposites such as morphology, thermal stability, mechanical properties, and UV transparency were investigated to illustrate the contribution of the introduction of AT into the PI matrix. FTIR spectra and SEM images revealed that network structures between co‐PI and AT are formed, which endowed the nanocomposites with outstanding thermal and mechanical properties. The co‐PI/AT nanocomposites exhibited excellent thermal and thermo‐oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature increasing to the ranges of 502–510°C and 555–562°C from 480°C to 526°C for the pristine co‐PI, respectively. The glass transition temperatures of these co‐PI/AT nanocomposites increased to the range of 231–238°C from 222°C for pure co‐PI. The co‐PI/AT nanocomposites films were found to be transparent, flexible, and tough. By incorporating 5 wt% AT into the co‐PI matrix, the tensile strength, elongation at break, and Young's modulus of the co‐PI/AT nanocomposites reached 110.7 MPa, 14.5%, and 1.2 GPa, respectively, which are 50%, 120%, and 80% increased compared with the values of pristine PI. POLYM. COMPOS., 35:86–96, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号