首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this work, several samples based on poly(lactic) acid (PLA)/butadiene rubber (BR) blend with and without nanoclay (Cloisite 30B) were prepared using an internal mixer. Various methods were used to characterize the samples, including scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD), rheometric mechanical spectrometer, stress–strain, and impact strength tests. The SEM results showed the droplet-matrix morphology for all prepared samples. With the incorporation of nanoclay, the mean diameter of the BR droplets generated within the PLA matrix decreased. AFM test revealed the placement of nanoparticles in the PLA phase, which was consistent with the thermodynamic prediction of their location. The XRD test showed that the interlayer space of nanoclay expanded by 86% due to the diffusion of polymer chains between them. In the rheology test, this resulted in an increment in modulus and viscosity at low frequencies for the nanocomposites compared to the simple blend. The highest elongation at break was observed for the PLA/BR blend containing 10 wt% BR with approximately 40 times its value for the neat PLA, while the impact resistance increased up to three times.  相似文献   

2.
Radiation‐induced graft copolymerization of alpha methyl styrene (AMS)‐butyl acrylate (BA) mixture onto poly(etheretherketone) (PEEK) was carried out to develop films of varying copolymer compositions. The characterization of films was carried out with fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The presence of AMS and BA units within the film matrix was confirmed by FTIR. The intensity of the characteristic peaks for AMS and BA increased with the increasing grafted component in the films. The crystallinity of the films as observed from DSC and XRD decreased with the increasing graft levels. On the other hand, the melting temperature of the base polymer was almost unaffected by irradiation and the grafting process. The glass transition temperature (Tg) of the grafted film increased as compared to the virgin PEEK. Ungrafted film showed a stable thermogram up to ~500°C. However, the grafting introduced a new decomposition range in the copolymer, due to the presence of the AMS/BA. AFM images showed the formation of domains on the grafted PEEK film surface. The SEM also showed domain formation of the grafted component within the PEEK matrix. However, the fracture analysis did not show any prominent phase separation. Mechanical characterization of films in terms of tensile strength, elongation, and modulus was also carried out. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Polyimide/mica (PI/mica) hybrid films were prepared from pyromellitic dianhydride/4,4-bis(3-aminophenoxy)biphenyl (PMDA/4,3-BAPOBP) and mica in a solution of N,N-dimethylacetamide. The structure–property relationships of the composites were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible spectroscopy and differential scanning calorimetry. FTIR indicated successful preparation of PI/mica hybrid films. XRD and SEM results indicated that the mica was well dispersed in the PI matrix. The dependence of morphology, glass transition temperatures (Tg), dielectric properties and mechanical properties at room temperature of the hybrid films on the content of mica was discussed. It was observed that Tg, the breakdown strength and tensile strength of the hybrid films, could be simultaneously increased when the mica content was lower than 8?wt-%. Meanwhile, the dielectric constant and dielectric loss of PI/mica hybrid films increased with the increase in the mica content.  相似文献   

4.
Chitosan and poly(vinyl alcohol) blend fibers were prepared by spinning their solution through a viscose‐type spinneret at 25°C into a coagulating bath containing aqueous NaOH and ethanol. The influence of coagulation solution composition on the spinning performance was discussed, and the intermolecular interactions of blend fibers were studied by infrared analysis (IR), X‐ray diffraction (XRD), and scanning electron micrograph (SEM) and by measurements of mechanical properties and water‐retention properties. The results demonstrated that the water‐retention properties and mechanical properties of the blend fibers increase due to the presence of PVA in the chitosan substract, and the mechanical strength of the blends is also related to PVA content and the degree of deacetylation of chitosan. The best mechanical strength values of the blend fibers, 1.82 cN/d (dry state) and 0.81 cN/d (wet state), were obtained when PVA content was 20 wt % and the degree of deacetylation of chitosan was 90.2%. The strength of the blend fibers, especially wet tenacity could be improved further by crosslinking with glutaraldehyde. The water‐retention values (WRV) of the blend fibers were between 170 and 241%, obviously higher than pure chitosan fiber (120%). The structure analysis indicated that there are strong interaction and good miscibility between chitosan and poly(vinyl alcohol) molecular resulted from intermolecular hydrogen bonds. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2558–2565, 2001  相似文献   

5.
The preparation of poly(n-butyl acrylate)/poly(acrylonitrile-co-styrene), i.e., poly(BA)/poly(AN-co-St) (PBAS) core-shell structured modifier with controlled particle size was reported, and the mechanical properties of AS/PBAS blends were investigated. The modifier was prepared at a solid content of 50 wt % by a two-stage sequential emulsion polymerization. Dynamic light scattering (DLS) was used to monitor the particle diameters and showed that the particles grew without significant secondary nucleation occurring. The morphology was confirmed by means of transmission electron microscopy (TEM). According to the research on mechanical properties of the AS/PBAS blends, a remarkable toughening effect of PBAS on AS resin was found. By means of scanning electron microscopy (SEM) observation, the toughening mechanism was proposed to be crazing caused by rubber particles and shear yielding of AS matrix. Uniform dispersion of rubber particles in AS matrix was attributed to the good compatibility between AS and PBAS modifier. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
In this study, we focused on the fabrication of poly(vinyl alcohol) (PVA)/poly(vinyl pyrrolidone) (PVP)/sericin composites via a simple solution‐blending method. The composites were characterized by Fourier transform infrared (FTIR) spectroscopy, UV spectroscopy, X‐ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis (TGA), and measurements of the conductivity, tensile strength, and antibacterial activity against Staphylococcus aureus. The results of FTIR and UV spectroscopy implied the occurrence of hydrogen bonding between sericin and the PVA/PVP blend. The structure and morphology, studied by XRD and SEM, revealed that the sericin particles were well dispersed and arranged in an orderly fashion in the blend. The glass‐transition temperature (Tg) of the composite was higher than that of the pure blend, and the Tg value shifted toward higher temperatures when the volume fraction of sericin increased. TGA indicated that sericin retarded the thermal degradation; this depended on the filler concentration. The mechanical and electrical properties, such as the tensile strength, alternating‐current electrical conductivity, dielectric constant, and dielectric loss of the composites, were higher than those of the pure blend, and these properties were enhanced when the concentration of sericin was increased up to 10 wt % filler content, whereas the elongation at break of the composite decreased with the addition of sericin particles. The antibacterial properties of the composite showed that sericin had a significant inhibitory effect against S. aureus. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43535.  相似文献   

7.
A series of high molecular weight poly (butylene succinate) and its copolyester containing rigid imide units were synthesized in this article. The chemical structure and composition of the copolyesters were determined by 1H NMR spectroscopy and Fourier transform infrared spectroscope (FT‐IR). The thermal properties, crystallization behavior and mechanical properties of polymers were investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide‐angle X‐ray diffraction (WAXD) and mechanical testing. The enzymatic degradation was investigated using pancreatic lipase solution. The results showed that the melting temperature (Tm) of the copolyester decreased with the increment in pyromellitic imide unit content. However, the thermal degradation temperature (5% decomposition temperature) changed little. Meanwhile, the enzymatic degradation rate of poly (butylene succinate) was enhanced. The mechanical properties showed that the tensile strength had a trend of decrease, but the elongation at break was improved with the increment in imide units. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40807.  相似文献   

8.
A graft copolymer composed of poly (2-hydroxy ethyl acrylate) (PHEA) as branched chains and chlorinated polyethylene (CPE) as backbone, CPE-cg-HEA, was synthesized by in situ chlorinating graft copolymerization (ISCGC). The polymer has special molecular structure with short graft chains and abundant branched points. The mechanical properties of CPE-cg-HEA were studied by tensile testing, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA). The morphologies of tensile fractured surfaces for CPE and CPE-cg-HEA were investigated by scanning electron microscope (SEM). The testing results indicated the mechanical properties of the in situ chlorinating graft copolymers have greatly improved compared with CPE with about the same chlorine content. Particularly, there was a broad plateau on the stress–strain curve of the graft copolymer, which meant a high elastic-like deformation.  相似文献   

9.
The adhesive properties of polymer blends based on poly(ethylene-co-vinyl acetate) (EVA) and poly(methyl methacrylate) (PMMA) were studied. Two samples were prepared, whereby one kind was a physically mixed blend of commercial polymers in a solution of toluene and the other was a blend with EVA-g-PMMA polymer in a toluene solution, produced via in situ free radical polymerization using redox system initiators. A scanning electron microscopy (SEM) revealed the improved microstructure that was achieved blending with graft polymer that could also be seen by FTIR spectral analysis. Optical fibers were glued together using both of the solutions and subjected to a micro mechanical testing machine. The adhesion test showed that the graft copolymer had enhanced mechanical properties as an adhesive than the physical polymer blend. Optical microscopy of the samples after the adhesion test enabled the determination of the type of adhesive failure. Image analysis of the SEM micrographs was used to determine an area of the contact surface, and characterization microstructure. These results were then implemented in a numerical simulation that demonstrated the influence of microstructure on the adhesive properties showing the stress distribution for both samples. The main aim of obtaining an adhesive with uniform structure, great miscibility of the polymers, and good mechanical and adhesive properties was achieved and a numerical model was established that can be used in selecting the adhesive.  相似文献   

10.
Blends of poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology and mechanical properties were investigated by scanning electron microscopy (SEM) and an Instron tensile tester. SEM studies revealed that finely dispersed spherical domains of the liquid crystalline polymer (LCP) were formed in the PEN matrix, and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. The morphology of the blends was found to be affected by their composition and a distinct skin-core morphology was found to develop in the injection molded samples of these blends. Mechanical properties were improved with increasing LCP content, and synergistic effects have been observed at 70 wt% LCP content whereas the elongation at break was found to be reduced drastically above 10 wt% of LCP content. This is a characteristic typical of chopped-fiber-filled composites. The improvement in mechanical properties is likely due to the reinforcement of the PEN matrix by the fibrous LCP phase as observed by scanning electron microscopy. The tensile and modulus mechanical behavior of the LCP/PEN blends was very similar to those of the polymeric composite, and the tensile strength and flexural modulus of the LCP/PEN 70/30 blend were two times the value of PEN homopolymer and exceeded those of pure LCP, suggesting LCP acts as a reinforcing agent in the blends.  相似文献   

11.
Microfibrillar reinforced composites (MFC) comprising an isotropic matrix from a lower melting polymer reinforced by microfibrils of a higher melting polymer were manufactured under industrially relevant conditions and processed via injection molding. Low density polyethylene (LDPE) (matrix) and recycled poly(ethylene terephthalate) (PET) (reinforcing material) from bottles were melt blended (in 30/70 and 50/50 PET/LDPE wt ratio) and extruded, followed by continuous drawing, pelletizing and injection molding of dogbone samples. Samples of each stage of MFC manufacturing and processing were characterized by means of scanning electron microscopy (SEM), wide‐angle X‐ray scattering (WAXS), dynamic mechanical thermal analysis (DMTA), and mechanical testing. SEM and WAXS showed that the extruded blend is isotropic but becomes highly oriented after drawing, being converted into a polymer‐polymer composite upon injection molding at temperatures below the melting temperature of PET. This MFC is characterized by an isotropic LDPE matrix reinforced by randomly distributed PET microfibrils, as concluded from the WAXS patterns and SEM observations. The MFC dogbone samples show impressive mechanical properties—the elastic modulus is about 10 times higher than that of LDPE and about three times higher than reinforced LDPE with glass spheres, approaching the modulus of LDPE reinforced with 30 wt% short‐glass fibers (GF). The tensile strength is at least two times higher than that of LDPE or of reinforced LDPE with glass spheres, approaching that of reinforced LDPE with 30 wt% GF. The impact strength of LDPE increases by 50% after reinforcement with PET. It is concluded that: (i) the MFC approach can be applied in industrially relevant conditions using various blend partners, and (ii) the MFC concept represents an attractive alternative for recycling of PET as well as other polymers.  相似文献   

12.
Illite particles were exfoliated by the intercalation and subsequent deintercalation of dimethyl sulfoxide (DMSO) in the interlayer of illite, and the exfoliated illite particles were used to prepare a novel poly(ethylene oxide) (PEO)–illite nanocomposite. The resulting exfoliated illite and PEO–illite nanocomposites were characterized by X‐ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry, ion conductivity testing, thermogravimetry analysis, and mechanical testing. The XRD results showed that the acid treatment of illite to exchange K+ in the interlayer of illite with H+ was a necessary condition for the DMSO intercalation. SEM micrographs confirmed the exfoliation of the illite particles in the process of DMSO deintercalation from the interlayer of the illite–DMSO intercalation complex. A good dispersion of exfoliated illite in the PEO matrix was also confirmed. A gradual decrease in the PEO crystallinity in the PEO–illite nanocomposites was observed with increasing exfoliated illite concentration. The ion conductivity of the nanocomposites gradually increased with the filler content and reached 3.21 × 10−5 S/cm at an illite concentration of 20 wt %. The formation of an amorphous region around the exfoliated illite was beneficial for Li+‐ion conduction. The ion conductivity significantly increased when the amorphous regions were connected to each other to form a conducting path for Li+ ions with a high filler concentration of greater than 10 wt %. Meanwhile, the thermooxidative stability and mechanical properties of the PEO–illite nanocomposites were also enhanced when exfoliated illite was introduced into the polymer matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44226.  相似文献   

13.
Novel hybrid systems based on poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) and a polyhedral oligomeric silsesquioxane (POSS) have been synthesized via click chemistry. Different compositions of SEBS-functionalized POSS were obtained from the reaction of azide-functionalized styrene units of SEBS with alkyne-functionalized POSS molecules. Characterization of SEBS-functionalized POSS by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and nuclear magnetic resonance spectroscopy revealed that the POSS molecules were successfully attached to the phenyl group of the SEBS polymer chain following the click reaction. Homogeneous dispersion of POSS molecules in the polymer matrix was demonstrated by scanning electron microscopy. The POSS molecule showed excellent compatibility with polymer matrix, and as a consequence the remarkable enhancement of mechanical properties (breaking stress = 44%, modulus = 285%) and thermal stability for the resulting composite films was achieved. The reinforcing effect is ascribed to both the compatible homogeneous dispersion of POSS in the matrix and the covalent bond between SEBS and POSS molecules arising from the click coupling.  相似文献   

14.
The effect of type and content of wood fibers on the thermal, mechanical and rheological behavior of the commercial biodegradable polyester product, Ecovio® (BASF) is analytically studied. Ecovio® is basically a blend of poly(butylene adipate‐terephthalate) copolyester (Ecoflex®, BASF) and polylactide. Three different types of wood fibers, based either on raw cellulose (Arbocel) or selected conifers (Lignocel), with varying fiber size at various weight fractions were used for this purpose. The role of these fibers on the thermomechanical performance of Ecovio® was investigated in terms of several experimental techniques including scanning electron microscopy, differential scanning calorimetry, dynamic mechanical analysis, creep, tensile testing, and water uptake at room temperature. At the low wood fiber content (20 wt %), Lignocel composite's properties are predominant compared with the Arbocel composites. It has been found, that at this wood content, an efficient compatibility between matrix and fibers is achieved, leading to superior reinforcement. This trend is completely reversed at higher filler loading, probably due to the poor interfacial adhesion between the matrix and Lignocel occurring at 30 wt %. This behavior was supported by all the experimental methods employed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42185.  相似文献   

15.
Epoxy, prepared through aminomethyl 3,5,5‐trimethylcyclohexylamine hardening of diglycidylether of bisphenol‐A (DGEBA) prepolymer, toughened with polycarbonate (PC) in different proportions, and reinforced with carbon fiber, was investigated by differential scanning calorimetry, tensile and interlaminar shear strength testing, and scanning electron microscopy (SEM). A single glass transition temperature was found in all compositions of the epoxy/PC blend system. The tensile properties of the blend were found to be better than that of the pure epoxy matrix. They increased with PC content up to 10%, beyond which they decreased. The influence of carbon fiber orientation on the mechanical properties of the composites was studied, where the fiber content was kept constant at 68 wt %. Composites with 45° fiber orientation were found to have very weak mechanical properties, and the mechanical properties of the blend matrix composites were found to be better than those of the pure epoxy matrix composites. The fracture and surface morphologies of the composite samples were characterized by SEM. Good bonding was observed between the fiber and matrix for the blend matrix composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3529–3536, 2006  相似文献   

16.
To improve the performance of unsaturated polyester (UP) under cold‐heat alternate temperature, self‐synthesized reactive thermotropic liquid crystalline polymer (TLCP)‐methacryloyl copolymer (LCMC), UP, and glass fiber (GF) hybrid composites was prepared by molding technology. The apparent activation energy and crystal behavior analysis of LCMC/UP blends were investigated by Differential scanning calorimetry and X‐ray diffraction (XRD), respectively, the results showed that the addition of LCMC can reduce apparent activation energy and accelerate the curing reaction of UP, the XRD analysis indicated that the crystal phase of LCMC still exist in the blends after blending with UP. The effect of LCMC content on the properties of LCMC/UP/GF hybrid composites such as impact strength, bending strength, and ring‐on‐block wear were also investigated through static mechanical tests and wear tests. The mechanical properties of hybrid composites increased significantly because of the addition of LCMC. The wear tests showed that LCMC can improve the wear resistance of the UP/GF/LCMC hybrid composites even though the content of LCMC was at a relatively low level (5–7.5 wt %). This makes it possible to develop novel kind of UP‐based materials with good wear resistance for various applications. The Worn surface was observed by scanning electron microscopy (SEM) and the mechanism for the improvement is discussed in this paper. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3899–3906, 2007  相似文献   

17.
Poly(acrylonitrile‐styrene‐butadiene) (ABS) was used to modify diglycidyl ether of bisphenol‐A (DGEBA) type epoxy resin, and the modified epoxy resin was used as the matrix for making multiwaled carbon tubes (MWCNTs) reinforced composites and were cured with diamino diphenyl sulfone (DDS) for better mechanical and thermal properties. The samples were characterized by using infrared spectroscopy, pressure volume temperature analyzer (PVT), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), thermo mechanical analyzer (TMA), universal testing machine (UTM), and scanning electron microscopy (SEM). Infrared spectroscopy was employed to follow the curing progress in epoxy blend and hybrid composites by determining the decrease of the band intensity due to the epoxide groups. Thermal and dimensional stability was not much affected by the addition of MWCNTs. The hybrid composite induces a significant increase in both impact strength (45%) and fracture toughness (56%) of the epoxy matrix. Field emission scanning electron micrographs (FESEM) of fractured surfaces were examined to understand the toughening mechanism. FESEM micrographs reveal a synergetic effect of both ABS and MWCNTs on the toughness of brittle epoxy matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Structure–property interdependency is of vital importance in developing advanced polymer nanocomposites as well as enhancing their ultimate properties. In this research study, toughening of polylactic acid (PLA) with nanofibrillated cellulose (NFC) was studied and comparison was made between the thermal and mechanical properties of systems containing pristine and modified NFC. NFC was modified through two different methods: acetylation of hydroxyl groups and grafting of poly(ethylene glycol) (PEG) onto cellulose chains. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry were employed to probe into the surface characteristics, thermal properties, and crystallinity of NFC/modified NFC, respectively; moreover, SEM imaging was utilized for surface morphology of the samples. Subsequently, PLA with modified and unmodified NFC was prepared to evaluate the filler addition effect on toughness. Acetylated NFC has changed the PLA crystallinity degree and rate, which affected the modulus of PLA, as signaled by the changed NFC surface. Particularly, mechanical and toughening behaviors of the prepared nanocomposites were analyzed based on tensile measurements which showed an eightfold rise in toughening along with 18% decrease in modulus of the samples comprising 1 wt% of acetylated NFC compared to a blank PLA. However, a sevenfold increase in toughening was observed upon introduction of both modified NFC to the PLA matrix. SEM observations divulged proper dispersion of NFC-g-AC in the PLA matrix which reduced stress concentration, but enhanced toughness in comparison with NFC-g-PEG with agglomeration that caused stress concentration leading to brittle behavior. In the light of the obtained results, it can be inferred that brittle PLA can be toughened by the surface-modified NFC. This research study can illuminate the way for future works on the modifications of nano-scale fillers/additives to achieve improved mechanical and thermal properties of PLA.  相似文献   

19.
Poly(butylene adipate-co-terephthalate) (PBAT) is a soft biodegradable polymer with a low melting temperature. PBAT has been melt-blended with a liquid crystalline polymer (LCP) aiming at preparing a new biodegradable polymer blend with improved mechanical properties. The phase structure and crystalline morphologies of the PBAT/LCP blends were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). It was found that the LCP domains are precisely dispersed in the PBAT matrix and that these domains act as the nuclei for PBAT crystallization. The nonisothermal crystallization temperature from the melt was dramatically shifted from 50°C to about 95°C by the addition of 20% LCP. In addition, the tensile modulus of the prepared blends increases gradually with increasing LCP content, indicating the excellent strengthening effects of LCP on the PBAT matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Glycerol-plasticized cornstarch and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blends were prepared by melt-extrusion at a constant 70:30 (mass/mass) ratio in the presence of a commercial organoclay. The effect of increasing the organoclay content on the morphology and physical properties of the blends was investigated soon after processing and after aging for 12 months. After processing, the materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and dynamic mechanical analysis (DMA). The results indicated that increasing clay mineral contents promoted significant improvements in the compatibility between the components. After aging, the samples were characterized by SEM, XRD and small-angle X-ray scattering (SAXS). Unexpectedly, the reduced size of the PHBV dispersed phase and the decreased crystallinity of both phases in the hybrids were maintained. XRD and SAXS results unambiguously proved the presence of both exfoliated layers and a small volume fraction of organoclay aggregates in the aged clay polymer nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号