首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molten Na2CO3–K2CO3 (NKC, 56–44 mol%) eutectic compositions were vacuum-impregnated, at the eutectic temperature, into two porous ZrO2:8.6 mol% MgO (magnesium-partially stabilized zirconia, MgPSZ) and ZrO2:8 mol% Y2O2 (yttria-fully stabilized zirconia, 8YSZ) ceramics. Thermogravimetric analyses were performed in mixtures of that composition with MgPSZ and 8YSZ ceramic powders. Before impregnation, porosity was achieved in the two compounds by addition and thermal removal of 30 vol.% NKC. To ascertain the carbonates had filled up through the ceramic body, both sides of the parallel and fracture surfaces of the disk-shaped impregnated compositions were observed in a scanning electron microscope and analyzed by energy-dispersive X-ray spectroscopy. The electrical conductivity of the two ceramics, before and after impregnation, was evaluated by electrochemical impedance spectroscopy in the 5 Hz–13 MHz frequency range from approximately 530 to 740°C. The permeation of the carbonate ions through the membranes via the eutectic composition was assessed by the threshold temperatures of the onset of the carbonate ion percolation. The objectives were to prepare dual-phase membranes for the separation of carbon dioxide and for the development of carbon dioxide sensors.  相似文献   

2.
Conclusions The heat treatment at 2000°C of zirconia ceramic with a grainy structure causes the destabilization of the ZrO2-CaO solid solutions but this is not complete after a 200-h dwell; the electrosmelted ZrO2 ceramic stabilized with CaO is more stable under these conditions. The ZrO2-Y2O3 solid solutions have greater stability on heating.When the grainy-structure zirconia ceramic is subjected to an isothermal dwell at 2000°C there is a consequent reduction in the strength properties caused either by the decomposition if the solid solutions (CaO-stabilized ceramic) or by the growth of crystals (Y2O3-stabilized ceramic).Deceased.Translated from Ogneupory, No, 7, pp. 51–55, July, 1979.  相似文献   

3.
Yb2O3 stabilized ZrO2 (YbSZ) doped with different TiO2 contents were produced, and their phase structure, thermal conductivities and thermal expansion coefficients were investigated. A new solid-solution model is proposed, i.e. Ti4+ would take the interstitial sites when its content is below a critical value (≤2.5 mol%) and then substitute for Zr4+. The abnormal lattice volume and thermo-physical properties of 2.5 mol% TiO2 doped YbSZ, and the positive effects of TiO2 doping on the thermal conductivity at moderate doping level are consistent with the new defect model. However, monoclinic phase is formed when the TiO2 content reaches to 10 mol% and its content increases with doping content, which have negative influence on the thermo-physical properties. Considering the comprehensive properties, 10 mol% TiO2 doped YbSZ is considered as a promising thermal barrier coating ceramic.  相似文献   

4.
Lu2O3 and Y2O3 doping of 8, 11, and 18 mol% in ZrO2 were prepared by solid solution reaction, aiming to study the phase stabilization of Lu2O3-doped ZrO2 and Y2O3-doped ZrO2 in terms of phase formation and lattice distortion. The Rietveld refinement results indicated that Lu2O3-doped ZrO2 and Y2O3-doped ZrO2 followed the same trend in terms of cubic phase fraction, increasing from 25%–30% (8 mol%) to 95%–100% (11 and 18 mol%). This phase formation was confirmed by observing the same diffraction ring pattern observed for the Lu2O3-doped ZrO2 and Y2O3-doped ZrO2. The Vickers hardness of the Lu2O3-doped ZrO2 was 4.3% higher than that of Y2O3-doped ZrO2 at 8 mol%, but 9.7% and 14.8% lower at 11 and 18 mol%, respectively. This was likely caused by the lattice distortion effect of Y2O3 doping overpowering the field strength difference between Lu3+ and Y3+.  相似文献   

5.
A novel fine-grained orthorhombic ZrO2 ceramic stabilized with 12?mol% Ta doping was fabricated by spark-plasma sintering from home-made powders, and its high-temperature mechanical properties evaluated for the first time by compressive creep tests in both Ar and air. It was found that the high-temperature plasticity of the ceramic deformed in Ar, under which the Ta-doped orthorhombic ZrO2 is a black suboxide with abundant oxygen vacancies in its crystal structure, is controlled by grain boundary sliding (stress exponent ~2, and activation energy ~780–800?kJ/mol). However, the high-temperature plasticity of the ceramic deformed in air, under which the Ta-doped orthorhombic ZrO2 is a white oxide due to the elimination in situ of oxygen vacancies, is controlled by recovery creep (stress exponent ~3, and activation energy ~750?kJ/mol). It was also observed that black Ta-doped orthorhombic ZrO2 is more creep resistant than its white counterpart with the same grain size, and that the former deforms as the more conventional Y2O3-stabilized ZrO2 does.  相似文献   

6.
Directed laser deposition (DLD) is a new method for rapidly preparing melt-grown ceramics, but cracking problem greatly limited its application. In this study, cracking behavior of Al2O3 ceramics was suppressed by doping ZrO2. Crack suppression mechanism of ZrO2 doping in melt-grown ceramics was also analyzed. Process parameters which are prone to generating cracks were adopted in the experiments, and they contribute to showing the crack clearly. Results show that ZrO2 doping has remarkable crack suppression effects. It is most obvious when ZrO2 content is 37 mol%. Compared with those of pure Al2O3 ceramics, crack density reduces by 43.2%, and the number of longitudinal main cracks reduces by 63.2%. Doping of ZrO2 forms dense composite microstructure with primary α-Al2O3 grains discretely distributing in eutectic continuous matrix. Therefore, initial crack sources are effectively reduced. Morphology of primary Al2O3 grains transforms from cellular to dendritic, which changes crack propagation mode from inter-granular to trans-granular. Mismatch of thermo-physical properties of different phase promotes the arrest, deflection, and bridging phenomena in crack propagation, contributing to crack suppression. On the basis of ZrO2 doping, we have realized the preparation of crack-free eutectic ceramic (37 mol%ZrO2) samples through further process optimization. The maximum size of the sample reaches 230 mm.  相似文献   

7.
The effects of Mn3O4 addition and reductive atmosphere (N2:H2 = 97:3) annealing on the microstructure and phase stability of yttria stabilized zirconia (YSZ) ceramics during sintering at 1500 °C for 3 h in air and subsequent annealing in a reductive atmosphere were investigated. Mn3O4 added 6 mol% YSZ (6YSZ) and 10 mol% YSZ (10YSZ) ceramics were prepared via the conventional solid-state reaction processes. The X-ray diffraction results showed that a single cubic phase of ZrO2 was obtained in 1 mol% Mn3O4 added 6YSZ ceramic at a sintering temperature of 1500 °C for 3 h. A trace amount of monoclinic ZrO2 phases were observed for 1 mol% Mn3O4 added 6YSZ ceramics after annealing at 1300 °C for 60 cycles in a reductive atmosphere by transmission electron microscopy. Furthermore, a single cubic ZrO2 phase existed stably as Mn3O4 added 10YSZ ceramics was annealed at 1300 °C for 60 cycles in reductive atmosphere.  相似文献   

8.
《Ceramics International》2017,43(11):8525-8530
Commercial Y2O3 powder was used to fabricate Y2O3 ceramics sintered at 1600 °C and 1800 °C with concurrent addition of ZrO2 and La2O3 as sintering aids. One group with different contents of La2O3 (0–10 mol%) with a fixed amount of 1 mol% ZrO2 and another group with various contents of ZrO2 (0–7 mol%) with a fixed amount of 10 mol% La2O3 were compared to investigate the effects of co-doping on the microstructural and optical properties of Y2O3 ceramics. At low sintering temperature of 1600 °C, the sample single doped with 10 mol% La2O3 exhibits much denser microstructure with a few small intragranular pores while the samples with ZrO2 and La2O3 co-doping features a lot of large intergranular pores leading to lower density. When the sintering temperature increases to 1800 °C, samples using composite sintering aids exhibit finer microstructures and better optical properties than those of both ZrO2 and La2O3 single-doped samples. It was proved that the grain growth suppression caused by ZrO2 overwhelms the acceleration by La2O3. Meanwhile, 1 mol% ZrO2 acts as a very important inflection point with regard to the influence of additive concentration on the transmittance, pore structure and grain size. The highest in-line transmittance of Y2O3 ceramic (1.2 mm in thickness) with 3 mol% of ZrO2 and 10 mol% of La2O3 sintered at 1800 °C for 16 h is 81.9% at a wavelength of 1100 nm, with an average grain size of 11.2 µm.  相似文献   

9.
Al2O3–ZrO2(CeO2) ceramic fibers have good heat insulation and high-temperature resistance. Pampas grass is a large perennial grass, or a natural fiber, with a hollow structure that can improve the heat insulation of the fiber by changing its heat transfer mode. This study introduces a method for the preparation of biomorphic Al2O3–ZrO2(CeO2) fibers with a hollow structure and a double-layer-tube structure using the pampas grass as thetemplate. Hollow ceramic fibers with good thermal insulation properties were prepared by soaking the pampas grass in ZrOCl2, Ce(NO3)3, and AlCl3 solutions before sintering them at high temperatures. When the zirconia doping ratio was 11 mol%, the biomorphic fiber with a double-layer-tube structure was prepared. The biomorphic fibers inherited the hollow structure of the pampas grass and retained the template fiber'scharacteristics of excellent continuity and a high degree of hollowness, whichdecreased the thermal conductivity of the fibers.  相似文献   

10.
Yttrium-stabilized ZrO2 (YSZ) hollow fibers derived from a ceiba template present a 25%–53% reduction in thermal conductivity compared with traditional YSZ solid fibers. However, after prolonged preservation at 1000°C, tetragonal ZrO2 (t-ZrO2) can easily transform to monoclinic ZrO2 (m-ZrO2), which destroys the hollow structure of the YSZ fibers and results in loss of the structural advantages for heat insulation. To overcome this, in this study, biomorphic lanthana and yttrium costabilized zirconia (LaYSZ) fibers with a hollow structure are fabricated by doping appropriate amounts of lanthanum in the raw materials of YSZ fibers. X-ray diffraction, scanning electron microscopy, and thermal conductivity measurements are utilized to confirm the phase-stability superiority of LaYSZ fibers to that of YSZ fibers under harsh conditions. After preservation at 1000°C for 150 hours, the m-ZrO2 content in the LaYSZ hollow fibers increases from 0 to 3.4 mol%, whereas that in the YSZ fibers increases from 0 to 10.25 mol%. Furthermore, owing to their better phase stability at 1000°C, the morphologies and heat-insulating properties of LaYSZ fibers are more improved in several aspects compared with YSZ fibers.  相似文献   

11.
Solid oxide fuel cells (SOFCs) operating at intermediate temperature (500°C‐700°C) provide advantages of better durability, lower cost, and wider target application market. In this work, we have studied Sc2O3 (5‐11 mol%) stabilized ZrO2–CeO2 as a potential solid electrolyte for application in IT‐SOFCs. Lower Sc2O3 doping range than the traditional 11 mol% Sc2O3‐stabilized ZrO2 is an interesting research topic as it could potentially lead to an electrolyte with reduced oxygen vacancy ordering, lower cost, and higher mechanical strength. XRD and Raman spectroscopy was used to study the phase equilibrium in ZrO2–CeO2–Sc2O3 system and impedance spectroscopy was done to estimate the grain, grain boundary, and total ionic conductivities. Maximum for the grain and grain‐boundary conductivities as well as the tetragonal‐cubic phase boundary was found at 8‐9 Sc2O3 mol% in ZrO2‐1 mol% CeO2 system. It is suggested that the addition of 1 mol% CeO2 in the ZrO2 host lattice has improved the phase stability of high‐conductivity cubic and tetragonal phases at the expense of low‐conductivity t′‐ and β‐phases.  相似文献   

12.
《Ceramics International》2022,48(15):21926-21934
The effect of TiO2 and Ta2O5 co-doping on the phase structure, fracture toughness, and sintering behavior of 10mol%(Y0.4Gd0.3Yb0.3)2O3-stabilized zirconia was investigated using X-ray diffraction, scanning electron microscopy, microindentation, and pressureless sintering. The results showed that 10mol%(Y0.4Gd0.3Yb0.3)2O3–ZrO2 had a single cubic phase structure, and an increase in the Ta2O5 (≥6 mol%) and TiO2 doping concentrations resulted in a simultaneous increase in the content and stability of the tetragonal phase. The fracture toughness of TiO2 and Ta2O5 co-doping 10mol%(Y0.4Gd0.3Yb0.3)2O3–ZrO2 decreased with an increase in the Ta2O5 content. On the other hand, the TiO2 content had no significant effect on the fracture toughness of 10mol%(Y0.4Gd0.3Yb0.3)2O3–ZrO2. The sintering resistance of the specimens increased with an increasing in the Ta2O5 content; however, an increase in the TiO2 content accelerated the densification of the specimens. When the Ta2O5 content was 10 mol% and the TiO2 content was in the range of 4–8 mol%, a single non-transformable tetragonal phase structure with fracture toughness similar to that of 6–8 wt% Y2O3 stabilized ZrO2 and excellent anti-sintering properties could be obtained. This structure can be explored as a thermal barrier coating material for high-temperature applications.  相似文献   

13.
In this study, a novel spinel solid solution ceramic of 0.4LiFe5O8–0.6Li2MgTi3O8 (0.4LFO–0.6LMT) has been developed and investigated. It is found that the 40 mol% LiFe5O8 and 60 mol% Li2MgTi3O8 are fully soluble in each other and a disordered spinel phase is formed. The ceramic sample sintered at 1050°C/2 h exhibits both good magnetic and dielectric properties in the frequency range 1–10 MHz, with a permeability between 29.9~14.1 and magnetic loss tangent between 0.12~0.67, permittivity between 16.92~16.94 and dielectric loss tangent between 5.9 × 10?3–2.3 × 10?2. The sample also has good microwave dielectric properties with a relative permittivity of 16.1, a high quality factor (× f) ~28 500 GHz (at 7.8 GHz). Furthermore, 3 wt% H3BO3–CuO (BCu) addition can effectively lower the sintering temperature to 925°C and does not degrade the magnetodielectric properties. The chemical compatibility with silver electrode indicates that this kind of ceramics is a good candidate for the low‐temperature cofired ceramic (LTCC) application.  相似文献   

14.
The acceptor-doped rutile TiO2 ceramics, x mol% M2O3-(1-x) mol% TiO2 (M = Al3+, Ga3+, and In3+), were prepared by solid state reaction method. The influence of Ar/H2 annealing on the structural and dielectric properties of the ceramics were systematically investigated. Our results reveal that the dielectric properties of the ceramics can be significantly improved by the Ar/H2 annealing. Ga3+ is found to be the most suitable dopant with the best doping level of 5 mol%. Excellent dielectric properties of colossal and flat dielectric permittivity (~1.2 × 105 (@1 kHz and 25 °C), low dielectric loss (~0.1), and good frequency stability were achieved over the temperature range of -70–150 °C in the Ar/H2-annealed 5 mol% Ga2O3-95 mol% TiO2 ceramic. This approach of acceptor-doping and Ar/H2 annealing leads to two thermally activated relaxations in the sample. The low-temperature relaxation is argued to be a Maxwell-Wagner relaxation caused by frozen electrons, while the high-temperature relaxation is a glass-transition-like relaxation associated with the freezing process of the electrons. This work highlights that engineering low-temperature Maxwell-Wagner relaxation paves a new way other than the frequently used acceptor-donor dual doping to design superior dielectric properties in the TiO2 system.  相似文献   

15.
We fabricated x(Bi0.5Na0.5)TiO3–(1−x)[BaTiO3–(Bi0.5Na0.5)TiO3–Nb] (BNT-doped BTBNT-Nb) dielectric materials with high permittivity and excellent high-temperature energy storage properties. The initial powder of Nb-modified BTBNT was first calcined and then modified with different stoichiometric ratios of (Bi0.5Na0.5)TiO3 (BNT). Variable-temperature X-ray diffraction (XRD) results showed that the ceramics with a small amount of BNT doping consisted of coexisting tetragonal and pseudocubic phases, which transformed into the pseudocubic phase as the test temperature increased. The results of transmission electron microscopy (TEM) showed that the ceramic grain was the core-shell structure. The permittivity of the 5 mol% BNT-doped BTBNT-Nb ceramic reached up to 2343, meeting the X9R specification. The discharge energy densities of all samples were 1.70-1.91 J/cm3 at room temperature. The discharge energy densities of all samples fluctuated by only ±5% over the wide temperature range from 25°C to 175°C and ±8% from 25°C to 200°C. The discharge energy density of the 50 mol% BNT-doped BTBNT-Nb ceramic was 2.01 J/cm3 at 210 kV/cm and 175°C. The maximum energy efficiencies of all ceramics were up to ~91% at high temperatures and were much better than those at room temperature. The stable dielectric properties within a wide temperature window and excellent high-temperature energy storage properties of this BNT-doped BTBNT-Nb system make it promising to provide candidate materials for multilayer ceramic capacitor applications.  相似文献   

16.
ZrO2–WC ceramic composites with 40 vol% WC were consolidated by pulsed electric current sintering (PECS) for 4 min at 1450 °C under a pressure of 60 MPa. The effect of ZrO2 stabilizers and the source of WC powder on the densification, phase constitution, microstructure and mechanical properties of the ZrO2–WC composites were investigated and analyzed. The experimental results revealed that the amount and type of ZrO2 stabilizers played a primary role on the phase constitution and mechanical properties of the composites in comparison to the morphology and size of the WC powder. The 2 mol% Y2O3-stabilized composites exhibited much better mechanical properties than that of 1.75 mol% Y2O3-stabilized or 1 mol% Y2O3 + 6 or 8 mol% CeO2 co-stabilized composites. A Vickers hardness of 16.2 GPa, fracture toughness of 6.9 MPa m1/2, and flexural strength of 1982 MPa were obtained for the composites PECS from a mixture of nanometer sized WC and 2 mol% Y2O3-stabilized ZrO2 powder.  相似文献   

17.
Dopant segregation at grain boundaries (GBs) in ceramics has been widely reported, while whether similar segregation behavior occurs in glass-ceramics remains unknown. The distribution of dopant in glass-ceramics may be totally different due to the existence of glass phase. This study examines the distribution of Y3+ ions in a ZrO2-SiO2 glass-ceramic. Two samples were prepared by hot pressing, yttrium oxide-doped, and undoped 65 mol% ZrO2-35 mol% SiO2 nanocrystalline glass-ceramics (NCGCs). The NCGCs had the same microstructure, that is, ZrO2 nanoparticles (NPs) embedded in an amorphous SiO2 matrix. XRD results showed that the undoped NCGC was composed of 20.9 wt% (weight percentage) monoclinic ZrO2 (m-ZrO2) and 79.1 wt% tetragonal ZrO2 (t-ZrO2), while the yttrium oxide-doped NCGC was composed of 9.6 wt% m-ZrO2 and 90.4 wt% t-ZrO2. X-ray energy-dispersive spectrometry (EDS) results in scanning electron transmission microscopy (STEM) mode demonstrated that Y3+ ions segregated both on the surface of ZrO2 NPs and within the thin intergranular glass film (with a thickness of approximately 7 Å) between ZrO2 NPs in the yttrium oxide-doped NCGC. Interestingly, no obvious Y signals were detected in the amorphous SiO2 matrix. Density functional theory calculation results showed that Y3+ ions had a strong segregation tendency in the GB area and the segregation of Y3+ ions increased the work of separation of GB layer. These findings provide new understanding of the segregation behavior of dopant in glass-ceramics, which may offer useful guidance for other researchers to tailor the properties of glass-ceramics through GB engineering.  相似文献   

18.
The 40 mol% CeO2‐stabilized ZrO2 ceramic was synthesized by the sol‐spray pyrolysis method and aged at 1400°C–1600°C. The effects of high‐temperature aging on its fracture toughness were investigated after heat treatments at 1500°C for 6–150 h in air. Characterization results indicated that the activation energy for grain growth of 40 mol% CeO2‐stabilized ZrO2 was 593 ± 47 kJ/mol. The average grain size of this ceramic varied from 1.4 to 5.6 μm within the aging condition of 1500°C for 6–150 h. The Ce‐lean tetragonal phase has a constant tetragonality (ratio of the c‐axis to a‐axis of the crystal lattice) of 1.0178 during the aging process. It was found that the fracture toughness of 40 mol% CeO2‐stabilized ZrO2 was determined to be 2.0 ± 0.1 MPa·m1/2, which did not vary significantly with prolonging aging time. Since no monoclinic zirconia was detected in the regions around the indentation crack‐middle and crack‐tip, the high fracture toughness maintained after high‐temperature aging can be attributed to the remarkable stability of the tetragonal phase in 40 mol% CeO2‐stabilized ZrO2 composition.  相似文献   

19.
《Ceramics International》2021,47(20):28210-28217
Nanosized CeO2–ZrO2 powders prepared by atmospheric pressure pyrolysis were used as raw materials to prepare CeO2–ZrO2 ceramics using microwave sintering. The samples were characterised using bulk density measurements, X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FT-IR), Raman, and scanning electron microscopy (SEM). The purpose was to determine the optimised microwave sintering process for CeO2–ZrO2 ceramics and reveal the corresponding mechanism. The results show that with a CeO2 addition content above 5 mol%, the tetragonal phase peak appeared obviously in the sample. The results show that the tetragonal phase peak appears when the CeO2 content is more than 5 mol%. The dopants, namely CeO2, have reduced the solid solution's phase transformation temperature with the assistance of microwave heating. Additionally, the grain size of the CeO2–ZrO2 ceramics has shown a negative relationship with Ce content at a temperature of 900 °C. The reason is that the rapid sintering due to microwave sintering and the oxygen vacancies generated by CeO2 can effectively inhibit grain growth. The regulation mechanism on microwave sintering of CeO2–ZrO2 ceramic was clarified, and the technical prototype of controlled prepared CeO2–ZrO2 ceramics by microwave sintering was constructed.  相似文献   

20.
《Ceramics International》2021,47(22):31907-31914
All-solid-state batteries have recently attracted much attention for their high energy density and safety. Li2ZrO3-based Li-ion conductors with high electrochemical stability have potential applications for electrolytes in all-solid-state batteries. In this work, comparative investigations of Li2ZrO3 and halogen doped Li2ZrO3 ceramics were conducted by sintering at 700 °C in air or in oxygen-deficient atmosphere which was induced by a simple setup covering with corundum crucible. The analysis of phase composition reveals that the undoped Li2ZrO3 ceramic sintered in air contains pure monoclinic phase, while halogen-doped Li2ZrO3 sintered in air and all ceramics sintered in oxygen-deficient atmosphere are simultaneously composed of monoclinic and tetragonal phases. Li2ZrO3 ceramic with tetragonal phases has higher conductivity (0.28 mS cm−1 for undoped Li2ZrO3) than the pure monoclinic Li2ZrO3 (0.07 mS cm−1), and halogen doping can further enhance the conductivity of Li2ZrO3 ceramics higher than 0.5 mS cm−1 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号