首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
A total of 14 fluoride composite ceramics were prepared through solid-state method and their microwave dielectric properties were investigated. Among the fluoride composite ceramics, 0.36LiF–0.39MgF2–0.25SrF2 (LMS) had the lowest sintering temperature (600°C) and presented a dielectric constant (εr) of 6.24 ± 0.05, a quality factor (Q × f) of 33 274 ± 900 GHz, and a temperature coefficient resonant frequency (τf) of −86.74 ± 8 ppm/°C. As the LMS ceramic had a low melting point (646°C), it can be used as sintering aid for LTCC applications. The sintering temperature of BaCuSi2O6 decreased from 1050°C to 875°C with 2 wt% LMS doped and excellent microwave dielectric properties of εr = 8.16 ± 0.04, Q × f = 24 351 ± 300 GHz, and τf = −9.74 ± 1 ppm/°C were obtained. Moreover, BaCuSi2O6-2 wt% LMS can be co-fired with Ag powders, which makes it a potential new candidate for LTCC applications.  相似文献   

2.
《Ceramics International》2016,42(9):10801-10807
The Ba1−xSrxMg2V2O8 (0≤x≤0.4) microwave dielectric ceramics were fabricated by a standard solid-state reaction method. The formation of a continuous solid solution within the whole composition range was identified. The ceramic samples could be well densified in the temperature range of 885–975 °C in air for 4 h. The permittivity εr was found to increase with increasing ionic polarizabilities. The Q×f values were believed to be closely related with packing fraction and grain refinement. The Sr2+ substitution contributed to a monotonous increase of the A-site bond valence, such that the τf value experienced a considerable variation from negative to positive values. The optimum microwave dielectric properties of an εr of 13.3, a high Qxf of 86,640 GHz (9.6 Hz) and a near-zero τf of −6 ppm/°C could be yielded in the x=0.15 sample when sintered at 915 °C for 4 h.  相似文献   

3.
Hexagonal La2O3 and monoclinic Eu2O3 ceramics were prepared, and their microwave dielectric properties were investigated. La2O3 sintered at 1400 °C exhibited promising microwave dielectric properties of εr = 18.6, Q×f = 71,400 GHz, and a negative τf of − 35.1 ppm/°C, while Eu2O3 sintered at 1500 °C possessed relative lower εr and Q×f values of 17.9 and 35,000 GHz, respectively, with an abnormally positive τf of + 19.6 ppm/°C. The difference in their microwave dielectric properties is mainly due to lattice-induced strain, which can be characterized by bond valence. To investigate the degradation of RE2O3 (RE = La, Eu) ceramics in air, a series of La2−xEuxO3 (x = 0.5, 1, and 1.5) ceramics were prepared. The results of the present study suggest that the introduction of Eu3+ effectively prevents the decomposition of La2O3.  相似文献   

4.
Low-permittivity Ca1−xSrxSnSiO5 (0 ≤ x ≤ 0.45) microwave dielectric ceramics were prepared via traditional state-reaction at 1400°C-1450°C for 5 hours. Moreover the microwave dielectric properties of SnO2 ceramic were obtained for the first time. SnO2 ceramic was difficult to densify, and SnO2 ceramic (ρrel = 65.1%) that was sintered at 1525°C exhibited the optimal microwave dielectric properties of εr = 5.27, Q × f = 89 300 GHz (at 14.5 GHz), and τf = −26.7 ppm/°C. For Ca1−xSrxSnSiO5 (0 ≤ x ≤ 0.15) ceramics, Sr2+ could be dissolved in the Ca2+ site of Ca1−xSrxSnSiO5 to form a single phase, and the partial substitution of Ca2+ by Sr2+ could improve the microwave dielectric properties of CaSnSiO5 ceramic. Secondary phases (SnO2 and SrSiO3) appeared at 0.2 ≤ x ≤ 0.45 and could adjust the abnormally positive τf value of CaSnSiO5 ceramic. The highest Q × f value (60 100 GHz at 10.4 GHz) and optimal microwave dielectric properties (εr = 9.42, Q × f = 47 500 GHz at 12.4 GHz, and τf = −1.2 ppm/°C) of Ca1−xSrxSnSiO5 ceramics were obtained at x = 0.05 and 0.45, respectively.  相似文献   

5.
Guided by the tolerance factor and average electronegativity difference, two stable garnets with compositions Ca3BTiGe3O12 (B = Mg, Zn) were designed, synthesized followed by structural, and dielectric characterization. The phase purity and structural characteristics were analyzed using X-ray, Rietveld refinement, and microstructural analysis through scanning electron microscopy. A cubic structure with an Ia-3d space group was confirmed for synthesized compositions. A combination of microwave dielectric properties for both garnets suggested that Ca3MgTiGe3O12 ceramic possessed a much higher quality factor (Q × f) ∼ 84 000 ± 3000 GHz coupled by a higher dielectric constant (εr) ∼ 12.97 ± 0.03, and a smaller temperature coefficient of resonance frequency (τf) ∼ −29.4 ± 1.5 ppm/°C compared to its Zn counterpart (Q × f ∼ 45 000 ± 2000 GHz, εr ∼ 12.84 ± 0.03, and τf ∼ −33.19 ± 1.6 ppm/°C). Such differences in dielectric performances were further explored utilizing packing fraction, ion polarizability, bond valence, Raman, and infrared spectrum to understand structure–property relationship.  相似文献   

6.
Complex pyrophosphates compounds have attracted much attention as promising candidates for substrate applications. In the work, a low-permittivity BaZnP2O7 ceramic was synthesized through solid-state reaction. The pure phase BaZnP2O7 was crystallized in the triclinic P−1 space group. Excellent microwave dielectric properties of the BaZnP2O7 ceramic with εr = 8.23, Qf = 56170 GHz, and τf = −28.7 ppm/°C were obtained at 870°C for 4 h. The substitution of Mg2+ for Zn2+ was found to have positive effects on grain morphology and dielectric properties. Optimized performance of εr = 8.21, Qf = 84760 GHz, and τf = −21.9 ppm/°C was yielded at 900°C for the BaZn0.98Mg0.02P2O7 ceramic. Intrinsic dielectric properties of BaZn1-xMgxP2O7 ceramics were studied via Clausius–Mossotti equation and complex chemical bond theory.  相似文献   

7.
The Ca1-xSrxWO4 (x?=?0, 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were fabricated through solid-state reaction, and the relationships among microwave dielectric properties of Ca1-xSrxWO4, bond ionicity, lattice energy and bond energy were systematically investigated for the first time. The patterns of X-ray diffractions of Ca1-xSrxWO4 presented tetragonal scheelite structure and no second phase appeared throughout the entire compositions. Dielectric properties of Ca1-xSrxWO4 were proved to be related to the microstructures: dielectric constant (εr) of Ca1-xSrxWO4 was dependent on the bond ionicity; the quality factor (Q×f0) of Ca1-xSrxWO4 was affected by W-site lattice energy when intrinsic loss is dominant; the temperature coefficient of resonant frequency (|τf|) would increase if B-site bond energy decreased. Ca1-xSrxWO4 ceramic showed excellent microwave dielectric properties, εr =?9.42, Q×f0 =?79876?GHz and τf =??18.8?ppm/°C when x?=?0.08 and sintered at 1100?°C for 4?h.  相似文献   

8.
La[Al1−x(Mg0.5Ti0.5)x]O3 (LAMT, x = 0-0.2) ceramics were synthesized by the conventional solid-state reaction method and formed a solid solution. The pure solid solutions were recorded by X-ray diffraction (XRD) in every range. Relative permittivity (εr) and structural stability were greatly affected because the Al3+ site was replaced by [Mg0.5Ti0.5]3+. The total ionic polarizability gradually increased with x, and εr gradually increased. The trend of τf is due to the change in structural stability. The variation in Q × f value increased firstly and then decreased due to the change in the symmetric stretching mode of Al/MgTi–O. The optimum microwave dielectric properties of LAMT were obtained at x of 0.1 after sintering at 1650°C for 5 hours, and εr = 24.9, Q × f = 79 956 GHz, and τf = −33 ppm/°C. The CaTiO3 have a large positive τf (+800 ppm/°C), thus, the τf achieved near zero when CaTiO3 and LAMT (x = 0.1) ceramics were mixed with a certain molar mass, and the optimum microwave dielectric properties of 0.65CaTiO3–0.35LaAl0.9(Mg0.5Ti0.5)0.1O3 were as follows: εr = 44.6, Q × f = 32 057 GHz, and τf = +2 ppm/°C.  相似文献   

9.
《Ceramics International》2015,41(7):8931-8935
The densification, microstructural evolution and microwave dielectric properties of (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics with x=0, 0.25, 0.5 and 0.75 are investigated in this study. The sintering temperature of the (Ba1−xSrx)(Mg0.5W0.5)O3 is significantly reduced from 1575 °C to 1400 °C as the x value increases from 0 to 0.25 and 0.50; this result is accompanied by the formation of the (Ba1−ySry)WO4 phase and a small quantity of second phase surrounding the grains. The grain size of the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics is increased by raising the Sr2+ content, which significantly lowers the sintering temperature. The microstructure of the (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic displays the smallest average grain size of approximately 0.8 μm, with a narrow grain size distribution. Without long annealing time, very high Q×f values are obtained for the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics sintered at 1400–1575 °C for a duration of only 2 h. The (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic sintered at 1400 °C results in the best microwave dielectric properties, including εr of 20.6, Q×f of 152,600 GHz and τf of +24.0 ppm/°C.  相似文献   

10.
Novel BaCa2M3O9 (M = Si, Ge) microwave dielectric ceramics were prepared via solid-state reaction with sintering at 1125°C–1275°C for 5 h. Single-phase BaCa2M3O9 (M = Si, Ge) ceramics were obtained according to stoichiometry. The single-phase BaCa2Ge3O9 ceramic was confirmed through Rietveld refinement and high-resolution transmission electron microscopy/selected area electron diffraction and synthesized for the first time. The BaCa2M3O9 (M = Si, Ge) exhibited a triclinic structure with a P 1 ¯ $\bar 1$ space group and good microwave dielectric properties. The εr, Q × f, and τf values of BaCa2M3O9 (M = Si, Ge) ceramics are mostly dominated by the relative density, ionic polarizability, relative covalence, and bond energy of M–O bond, respectively. A high Q × f value (61 800 GHz at 16.3 GHz) was obtained in BaCa2Ge3O9 ceramic due to its high rc (Ge–O) and low intrinsic dielectric loss. The BaCa2Si3O9 ceramic exhibited small |τf| value (‒36.4 ppm/°C) due to its large ESi-O. Excellent microwave dielectric properties (εr = 8.31, Q × f = 61 800 GHz, and τf = ‒58.7 ppm/°C) were obtained for the BaCa2Ge3O9 ceramic.  相似文献   

11.
The dielectric properties of a Ga-based melilite type ceramic Sr2Ga2SiO7 via theoretical prediction based on far-infrared spectroscopy and experimental measurement by the Hakki–Coleman method were studied in this work. Dense and single-phase ceramics were fabricated via solid-state reaction at 1330°C and exhibited comprehensive microwave dielectric properties (εr ∼ 7.6, Q × f ∼ 23 600 GHz, and τf ∼ −35.2 ppm/°C) at 14.3 GHz. Chemical modifications were proposed to adjust the thermal stability and reduce the densification temperature. By adding 10 mol% CaTiO3, the negative τf can be compensated to a near-zero value of −3.8 ppm/°C. The densification temperature was reduced to 940°C by adding 3 wt.% LiF. A patch antenna was designed using Sr2Ga2SiO7 ceramic with a high radiation efficiency of 99.1% and a gain of 2.788 dBi at the center frequency of 4.371 GHz. All results indicate that the Sr2Ga2SiO7 ceramic has promising application potential for 5G wireless communication technology.  相似文献   

12.
The microwave dielectric characteristics of 0.75(Al1/2Ta1/2)O2–0.25(Ti1−xSnx)O2 ceramics were investigated. The microwave dielectric properties of 0.75(Al1/2Ta1/2)O2–0.25TiO2 sintered at 1450 °C exhibited a dielectric constant (ϵr) of 31.2, a Q·f0 of 54,590 GHz, and the temperature coefficient of resonant frequency (τf) of +12.8 ppm/°C. To control of the τf and enhance the Q·f0 for 0.75(Al1/2Ta1/2)O2–0.25TiO2, Sn4+ was substituted for Ti4+. With an increase of Sn content from 5 to 50 mol%, the εr slightly decreased, the Q·f0 increased and the τf shifted from positive to negative value. The τf within ±10 ppm/°C of zero was realized for the Sn content below 30 mol% and the microwave dielectric properties had the εr value of 31.2–26.3, the Q·f0 of 54,600–70,700 GHz, and τf of +12.8–−9.3 ppm/°C for this compositions. The relationship between microstructure and microwave dielectric characteristics was investigated.  相似文献   

13.
Sr2[Ti1−x(Al0.5Nb0.5)x]O4 (x = 0, 0.10, 0.25, 0.30, 0.5) ceramics were synthesized by a standard solid-state reaction process. Sr2[Ti1−x(Al0.5Nb0.5)x]O4 solid solutions with tetragonal Ruddlesdon-Popper (R-P) structure in space group I4/mmm were obtained within x ≤ 0.50, and only minor amount (1-2 wt%) of Sr3Ti2O7 secondary phase was detected for the compositions x ≥ 0.25. The temperature coefficient of resonant frequency τf of Sr2[Ti1−x(Al0.5Nb0.5)x]O4 ceramics was significantly improved from 132 to 14 ppm/°C correlated with the increase in degree of covalency (%) with increasing x. The dielectric constant ɛr decreased linearly with increasing x, while high Qf value was maintained though it decreased firstly. The variation tendency of Qf value was dependent on the trend of packing fraction combined with the microstructure. Good combination of microwave dielectric properties was achieved for x = 0.50: ɛr = 25.1, Qf = 77 580 GHz, τf = 14 ppm/°C. The present ceramics could be expected as new candidates of ultra-high Q microwave dielectric materials without noble element such as Ta.  相似文献   

14.
Structural evolution and microwave dielectric properties of LiNb0.6(Ti1-x[Co1/3Nb2/3]x)0.5O3 (.05≤x≤.2) ceramics have been studied in this paper. Although the doped compositions maintain the M-phase solid solutions, compositional fluctuation due to nonuniform dispersion of minor dopants could be observed as x < .05, and trace amount of Li2TiO3-based solid solution (Li2TiO3ss) secondary phase presents in the x > .05 compositions. The microwave dielectric properties could be remarkably improved by the doping of (Co1/2Nb1/2)4+ in comparison to the undoped counterpart. Optimized microwave dielectric properties with Q × = ∼6500 GHz, εr = ∼74 and τ= +8.2 ppm/°C could be obtained at x = .10 after sintering at 1050°C/2 h. The sintering temperature could be further reduced to 900°C/2 h by adding .2 wt% B2O3 without affecting significantly its microwave dielectric properties: εr = 73, Q × = 6000 GHz, τ= +8.5 ppm/°C. The LiNb0.6(Ti1-x[Co1/3Nb2/3]x)0.5O3 ceramics obtained in this case exhibit large dielectric permittivity coupled with much improved Q × f values, near zero τf, and low sintering temperature simultaneously, which makes it a promising high-k microwave dielectric material for low temperature cofired ceramic applications.  相似文献   

15.
The relationship among the sintering behavior, crystal structure, chemical bonding properties, and dielectric properties of wolframite-type ZnZr(Nb1−xTax)2O8 (0.0 ≤ x ≤ 1.0) ceramics was investigated with the progressive replacement of Nb5+ by Ta5+. The optimum sintering temperature increases from 1225 to 1375°C with increasing Ta5+ content. The εr value falls from 27.34 to 22.34 due to a gradual decrease in bond ionicity and a shift in the Raman vibration modes toward higher wave numbers. The Q × f increases from 63 604 GHz (@6.71 GHz) to 115 631 GHz (@7.89 GHz), which is since the increase in the total lattice of chemical bonds. Moreover, the reduction in grain boundary area and the gradual lowering of the full width at half maximum of the Raman vibration modes contribute to the reduction in dielectric losses. First-principles calculations illustrate that the growth in bandgap and electron cloud density in the internal space of the [Zn/ZrO6] octahedron leads to a reduction in dielectric loss. Furthermore, the reduced degree of oxygen octahedral distortion causes a change in τf from −46.56 to −37.40 ppm/°C.  相似文献   

16.
The influence of BaCu(B2O5) (BCB) on densification, phases, microstructure and microwave dielectric properties of ZnNb2O6xTiO2 (x = 1.70–1.90) composite ceramics have been investigated. Undoped ZnNb2O6–1.8TiO2 ceramics sintered at 1200°C exhibit temperature coefficient of resonant frequency (τf) ~9.25 ppm/°C. When BaCu(B2O5) was added, the sintering temperature of the ZnNb2O6–1.8TiO2 composite ceramics was effectively reduced to 950°C. The results indicated that the permittivity and Q × f were dependent on the sintering temperature and the amounts of BaCu(B2O5). Addition of 3.0 wt% BaCu(B2O5) in ZnNb2O6–1.8TiO2 ceramics sintered at 950°C showed excellent dielectric properties of εr = 40.9, Q × f = 12,200 GHz (f = 5.015 GHz) and τf = +0.3 ppm/°C.  相似文献   

17.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

18.
《Ceramics International》2021,47(22):31732-31739
The microwave dielectric properties of spinel-structured Li(Mg0.5Ti0.5)xGa5−xO8 (0 ≤ x ≤ 1) ceramics were researched together with their microstructures. The X-ray diffraction and Raman spectroscopic revealed that an ordered spinel structure in 1: 3 B-site ordering with space group P4332 was formed in the composition range of 0 = x ≤ 0.25, and a disordered spinel with space group Fd-3m was formed in 0.5 = x ≤ 1. All the ceramics were compact with uniform grain, clear grain boundaries and high relative density (ρrelative ≥ 95 %). With the substitution of [Mg0.5Ti0.5]3+ for Ga3+ increased, the dielectric constant (εr) increased from 10.48 to 11.28, which was related to the increased molar ionic polarizability (αtheo/Vm) and B-site bond ionicity. The temperature coefficient of the resonant frequency (τf) slightly increased from −66.27 ppm/°C to −61.45 ppm/°C, due to the decrease of B-site bond valence. The Q × f value firstly decreased from 125,400 GHz to 50,381 GHz and then increased to 85,360 GHz, which was affected by the intrinsic loss analyzed by lattice energy. The optimal microwave dielectric properties were obtained for LiMg0.5Ti0.5Ga4O8 ceramic (x = 1) sintered at 1260 °C with εr = 11.28, Q × f = 85,360 GHz and τf = −61.45 ppm/°C.  相似文献   

19.
A series of 0.9625MgTiO3-0.0375(Ca0.5Sr0.5)TiO3 composite ceramics added with different amounts of B2O3 (1-5 wt%) were prepared via the solid state sintering method using the pre-synthesized raw MgTiO3 and (Ca0.5Sr0.5)TiO3 powders by molten-salt reaction. The sintering temperature of 0.9625MgTiO3-0.0375(Ca0.5Sr0.5)TiO3 composite ceramics can be reduced from 1275°C to 1175°C due to the liquid phase sintering effect of B2O3. When the adding amount of B2O3 was more than 2 wt%, a new phase MgTi2O5 could be detected by X-ray diffraction, which would substantially degrade the dielectric properties of the obtained ceramics. Resultantly, the quality factor (Q·f) and dielectric constant (εr) of the samples increase first and decrease later with increasing addition amount of B2O3. In addition, the temperature coefficient of resonant frequency (τf) progressively increases with increasing content of B2O3. By sintering at 1175°C for 4 hours, the obtained 0.9625MgTiO3-0.0375Ca0.5Sr0.5TiO3 composite ceramics with 2 wt% B2O3 possess the optimal microwave dielectric properties of εr = 18.9, Q·f = 57 000 GHz and τf = −1.2 ppm/°C.  相似文献   

20.
An ultra-low dielectric loss ceramics Mg2Ge0.98O4 with olivine structure was fabricated by conventional solid-state route. The phase composition, crystal structure, and microwave dielectric properties were investigated. The phase of Mg2Ge0.98O4 is formed to the orthorhombic forsterite structure with a space group Pmnb (62). The dense microstructure and excellent microwave dielectric properties of Mg2Ge0.98O4 ceramic were obtained at 1360°C for 4 hours, with relative density ~96.4%, εr ~ 7.3, Q × f = 112 400 GHz, and τf ~ −64.6 ppm/°C. The conductive mechanism of Mg2Ge0.98O4 in the low frequency (<1 MHz) was studied by the dielectric spectroscopy and the result with Edc = 0.93 eV demonstrates that the defect was contributed to the double ionized oxygen vacancies. The intrinsic dielectric properties of Mg2Ge0.98O4 in the microwave region were obtained by infrared reflectivity spectra with εr ~ 7.13, Q × f = 120 400 GHz. And, acceptable τf (~+2.6 ppm/°C) of 0.92Mg2Ge0.98O4–0.08CaTiO3 composite ceramic was obtained by adding the CaTiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号