首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermally robust and efficient composite ceramic phosphors (CCPs) combined both the merits of matrix and phosphor have received growing interests. However, high matrix content (e.g., Al2O3 >40 wt%) brings diluted activated ion concentration and dropped photoluminescence (PL) quantum yield (QY). Here, a novel layered array Al2O3-LuAG: Ce CCP, where Al2O3 and LuAG: Ce thin layers (10–250 µm) are alternately arranged, was presented. Owing to the special structure, thermal phonons and photons are respectively routed into Al2O3 layers and LuAG: Ce layers, which weakens the influence of Al2O3 and heat accumulation on PL properties. Consequently, it exhibits high PLQY (84.1%) and good thermal conductivity (17.1 W·m?1·K?1). When it is irradiated under high-power density (27.2 W·mm?2) blue laser, the luminous efficiency and lumen-density are promoted to 220 lm·W?1 and 5994 lm·mm?2, respectively. This work provides a promising new microstructure in developing novel phosphor converters for high-brightness laser phosphor display.  相似文献   

2.
《Ceramics International》2022,48(2):1682-1689
Stable color converters exhibiting high color rendering index have drawn researchers’ attention for their applications in high-quality white laser lighting. In this study, we develop the multi-color phosphor-in-glass (PIG) with the weight ratio of green-emitting (Y3Al3.08Ga1.92O12:Ce3+) to red-emitting (CaAlSiN3:Eu2+) phosphor powders (10/1–18/1) by low temperature co-sintering method. The obtained composite material displays an outstanding optical and thermal performance, including a high internal quantum efficiency of 84.2%, a high transparency of 45% in the visible region and a low thermal quenching (it remains 86% at 448 K). By integrating 450 nm blue laser diodes with optimized multi-color PIG, the white light with a maximum luminous flux of 258 lm and a luminous efficiency of 137 lm/W is achieved for the first time. Additionally, considering the white balance, by tailoring the weight ratio of green-emitting to red-emitting phosphor and the thickness of PIG, the 14/1 PIG at fixed thickness of 0.75 mm produces pure white light with ultra-high color rendering index of 95.2 and a high luminous efficiency of 120.9 lm/W under power density of 2.39 W/mm2 irradiation. The above superior characteristics imply that the multi-color PIG is an ideal candidate for high-quality white laser lighting applications.  相似文献   

3.
Y3Al5O12:Ce,Si (YAG:Ce,Si) phosphor ceramics prepared by a solid‐state reaction method were drilled with an array of holes in a diameter of 100 μm. The laser‐induced heat‐affected zone surrounding the laser‐drilled holes with a ring width of about 150 μm was analyzed to consist of Y4Al2O9, YAlO3, and Al2O3 phases, induced by the phase transformations from the YAG melt during laser drilling. Photoluminescence study of the YAG:Ce,Si phosphor ceramic indicated variable blue light transmission and yellow emission, suggesting the potential of tuning blue/yellow intensity ratio as well as precise color control of light‐emitting diodes.  相似文献   

4.
In this work, a series of Al2O3–Ce:YAG phosphor powders were synthesized by regulating the excess Al3+ of (Y,Ce)3Al5O12 via coprecipitation method for the first time, where Al3+, Ce3+, and Y3+ elements were uniformly distributed. With the increase of Al3+ content, the morphology of the powders changed from wormlike shapes to flaky shapes, and Y3Al5O12 phases had a tendency to convert to YAlO3 phases. The x wt.% Al2O3–(Y0.999Ce0.001)3Al5O12 (x = 20, 30, 40, 50, 60, and 70) composite phosphor ceramics (CPCs) were obtained by vacuum sintering (1775°C × 10 h), where Al2O3 and Ce:YAG phases were also well-distributed. When the Al2O3 content was 30–40 wt.%, the average grain size of Al2O3 was close to that of Ce:YAG. A solid-state laser lighting device was constructed by a 450 nm laser source and CPCs in a reflection mode. By adjusting the laser power, the correlated color temperature (CCT) values of white laser diodes (LDs) were achieved close to the standard white light of 6500 K. Impressively, the white LDs equipped with the 40 wt.% Al2O3-containing CPCs showed the optimum CCT of 6498 K (color coordinates: 0.31 and 0.38), as well as a high luminous flux of 1169 lm and efficiency of 166 lm/W at the LD power of 7.05 W. This work has provided a potential idea to optimize the composition uniformity of Al2O3–Ce:YAG CPCs as also to explore their excellent performance in the application of white laser lighting.  相似文献   

5.
(Ce,Gd):YAG-Al2O3 composite ceramics were prepared for high-brightness yellow LED (565?590 nm) applications. Phase fraction, microstructure, thermal quenching effect, and luminescent properties of composite ceramics with varying compositions were studied in detail. Collaborating composite ceramics with InGaN blue chips, the relationship between thermal conductivity, temperature rise during LED-driven phosphor conversion, and steady-state luminous efficiency were elucidated. As the proportion of Al2O3 increases from 0 to 40 wt%, the steady-state luminous efficiency of yellow LED is enhanced from 100.88–109.49 lm W?1, benefiting from the increased thermal stability and reduced operating temperature of ceramics (from 141.1–132.2 °C). Additionally, scattering behavior and extraction efficiency of composite ceramics with different thicknesses were investigated.  相似文献   

6.
《Ceramics International》2021,47(22):31548-31554
The lightweight spinel-corundum refractory was prepared using the Kirkendall effect when spherical particles Al2O3@CaCO3 were introduced into the ingredient. The mechanism of pore formation through in-situ pore formation combined with the Kirkendall effect to reduce the bulk density of the refractory to the lightweight has been investigated in detail. The properties of the lightweight spinel-corundum refractory have also been studied. The results showed that the calcium at the center of the spherical particle spreads outwards and reacts with Al2O3 in the shell to form calcium hexaluminate (CA6). After which a portion of CA6 reacts with spinel in the matrix to manufacture a solid solution phase (CM2A8). At the same time, the hollow structure forms at the center of the spherical particle due to the buildup of the Kirkendall pore. With the additional amount of the Al2O3@CaCO3 spherical particles reaches 30%, the samples fired in 1650 °C for 3 h can gain high compressive strength (119.8 MPa), high refractoriness under load (>1700 °C), low bulk density (2.76 g cm−3) and low thermal conductivity (1.36 W·(m·K) −1).  相似文献   

7.
In order to meet the increasing demand for high-power laser diode lighting and displays, phosphor converters with high-brightness and high-directionality ought to be constructed to enhance the luminance and luminous efficacy. However, the pores formed during the sintering of phosphor ceramics affect the scattering effect and directionality of light. Therefore, porosity optimization and pore size regulation need to be explored. In this work, a series of Ce:YAG ceramics with various porosities and pore sizes were prepared. The influences of porosity and pore size on the microstructure, light confinement ability, and optical properties of Ce:YAG ceramics were studied. The ceramic phosphor with a porosity of 10 vol.% and a pore size of 3 μm exhibits a good spot confinement ability and shows a high luminous flux value of 3430 lm and a central luminance (1669 592 cd/m2) under blue laser excitation. The 10 vol.% Ce:YAG ceramic phosphor with a pore size of 5 μm has the highest emission intensity and gives a maximum luminous efficacy of 268 lm/W and a luminous flux of 4020 lm under 30 W/mm2 blue laser excitation. Thus, the porous Ce:YAG ceramics are expected to be a promising candidate for high-brightness laser lighting and projection applications.  相似文献   

8.
《Ceramics International》2023,49(1):792-800
It is of great significance to explore blue photoluminescent phosphor for white light-emitting diodes excited by near-ultraviolet chip. However, it is very challenging to prepare efficient blue luminescence in phosphor by an unsophisticated synthesis process. In this work, a series of blue-emitting Ca2Y1-xZr2Al3O12: xCe3+ phosphors are designed via local lattice distortion and synthesized in nonreducing atmosphere. The crystal structure of samples and the coordination environment of Ce3+ have been investigated in detail by X-ray diffraction and Rietveld refinement method. The wide-band blue emission peaking at 460 nm is attributed to a relaxed crystal field strength. Based on dodecahedron distortion caused by unequal increase of Ce–O bond length, the wavelength of blue color luminescence tuning can be realized from 459 nm to 472 nm. In addition to the concentration quenching effect, the fluorescent lifetimes, thermal quenching effect, the internal quantum efficiency, CIE chromaticity coordinates and related mechanisms of samples have also been studied systematically. Using the representative sample with other tricolor phosphors on a 365 nm chip, a prototype LED device with chromaticity point of (0.394, 0.384) and high CRI (93.5) at CCT of 3755 K is fabricated. All the results suggest that Ca2Y1-xZr2Al3O12: xCe3+ phosphors can be conducted as potential alternative of blue-emitting phosphor for near-ultraviolet pumped white light-emitting diodes.  相似文献   

9.
It has been one of the hot issues to prepare the red-emitting Mn4+-doped fluoride phosphors with highly efficient and waterproofness for warm white-light-emitting diodes (WLEDs) by the green and environmentally friendly method. Herein, we design a novel green molten salt route to synthesize K2SiF6:Mn4+ red powder using molten NH4HF2 salt instead of HF liquor as the reaction medium. The results show that KMnO4 and MnF2 could produce Mn4+ in NH4HF2 molten salt through a reduction reaction, and the resulting Mn4+-doped K2SiF6 exhibited a bright red emission peaked at 632 nm under blue light excitation. The luminescence intensity of the as-obtained product after immersing into water for 24 hours maintain nearly 100% of that before soaking and emission peak shape remains unchanged. The thermal stability of the sample was evaluated by temperature-dependent luminescence spectral intensity during heating and cooling. Furthermore, a warm white-light-emitting diodes (WLEDs) with an excellent color rendering index (Ra = 87.1), lower correlated color temperature (CCT = 3536K), and high luminous efficacy (116.99 lm·W−1) was fabricated based on blue chip and K2SiF6:Mn4+ and commercial yellow phosphor (Y3Al5O12:Ce3+).  相似文献   

10.
Substitution characteristics of the halide ions F Cl for the OH ions in the crystal lattice of 12CaO·7Al2O3 solid solution were investigated. Single phases of composition 11CaO·7Al2O3·CaF2 and 11CaO·7Al2O3·CaCl2 were formed at 900 °C or above. The OH ions in 12CaO·7Al2O3 solid solution, i.e. 11CaO·7Al2O3·Ca(OH)2, could be replaced wholly or partially by F or Cl ions from the corresponding calcium halide, forming 11CaO·7Al2O3·Ca(OH,F)2 and 11CaO·7Al2O3·Ca(OH,Cl)2 solid solutions above 500 °C and above 700 °C, respectively. Lattice constants of 12CaO·7Al2O3 solid solution changed continuously with the proportion of F ions or Cl ions. The F ions in 11CaO·7Al2O3·CaF2 could be wholly or partially substituted by Cl ions from CaCl2 at 900 °C or more, forming the solid solution 11CaO·7Al2O3·Ca(F,Cl)2. The Cl ions in 11CaO·7Al2O3·CaCl2 could be partially replaced F ions from CaF2 at 1000 °C or above, apparently due to slow chloride loss by evaporation.  相似文献   

11.
Anti-spinel oxide SrY2O4 has attracted extensive attention as a promising host lattice due to its outstanding high-temperature structural stability and large thermal expansion coefficient (TEC). However, the overhigh thermal conductivity limits its application in the field of thermal barrier coatings. To address this issue, a novel high-entropy Sr(Y0.2Sm0.2Gd0.2Dy0.2Yb0.2)2O4 ceramic was designed and synthesized for the first time via the solid-state method. It is found that the thermal conductivity of Sr(Y0.2Sm0.2Gd0.2Dy0.2Yb0.2)2O4 is reduced to 1.61 W·m−1·K−1, 53 % lower than that of SrY2O4 (3.44 W·m−1·K−1) at 1500 °C. Furthermore, reasonable TEC (11.53 ×10−6 K−1, 25 °C ∼ 1500 °C), excellent phase stability, and improved fracture toughness (1.92 ± 0.04 MPa·m1/2) remained for the high-entropy Sr(Y0.2Sm0.2Gd0.2Dy0.2Yb0.2)2O4 ceramic, making it a promising material for next-generation thermal barrier coatings.  相似文献   

12.
《Ceramics International》2022,48(24):36531-36538
Laser diodes (LDs) combined with color converters have been considered as new-generation high-brightness white light source. Whereas, the luminescence of phosphor materials is easily influenced by accumulated heat originating from laser-driven conversion. In order to alleviate the thermal effect under focused laser of high-power, we proposed a high-luminescence laser-driven color converter of heat-conducting La3Si6N11:Ce3+ (LSN:Ce) phosphor-in-glass (PiG). The LSN:Ce nitride phosphor exhibits excellent opto-thermal property. The LSN:Ce-PiG-AlN converter was fabricated by sintering the LSN:Ce-PiG layer (~50 μm) upon a AlN ceramic substrate. Due to excellent luminescence of LSN:Ce and high thermal conductivity of AlN, the LSN:Ce-PiG-AlN converter achieves a luminous flux (LF) of 376.1 lm, a luminous efficiency (LE) of 158 lm/W, and a correlated color temperature (CCT) of 4462 K under 2.39 W laser excitation. In addition, the temperature of PiG film surface still stays low level (<150 °C) when driven by 4.82 W laser irradiation. The proposed LSN:Ce-PiG-AlN converter is a high-performance and promising phosphor converter for high-luminescence white laser lighting.  相似文献   

13.
A novel Mn2+ activated green-emitting MgAlON transparent ceramic phosphor was synthesized from Mg0.21Al2.57O3.80N0.20:0.03Mn2+ (MgAlON:Mn) phosphor powder by pressureless sintering combining with hot isostatic pressing. By crystalline structure refinement and cathodoluminescence (CL) characterization, it is demonstrated that Mn2+ was dissolved in the spinel lattice and occupied the tetrahedral site. The ceramic, retaining high transmittance in UV–vis region (up to 82% at 800 nm) and excellent thermal-mechanical properties of MgAlON transparent ceramic-matrix, shows a strong green emission at 513 nm under 445 nm light excitation. Compared with its powder counterpart, the ceramic phosphor exhibits higher green color purity, higher internal quantum efficiency (47%) and lower thermal quenching. It is suggested that this novel green solid phosphor could be applied in high color rendering and high-power white light-emitting diodes when combined with a red solid phosphor and a blue LED chip.  相似文献   

14.
《Ceramics International》2020,46(1):653-662
The miniaturization of high-brightness white light-emitting diodes (WLEDs) is limited by the low thermal performance of phosphors. In this study, the microstructure, optical properties, and thermal performance of Al2O3–Y3Al5O12:Ce3+ (Al2O3–YAG:Ce) composite ceramics fabricated by hot pressing were investigated. By promoting the growth of Al2O3 grains while maintaining a high composite density, thermal performance of the composite ceramics was significantly increased. The thermal conductivity of a Al2O3–40-vol% YAG:Ce ceramic reached 21.8 W/m/K, which is close to the theoretical value. In addition, this composite ceramic exhibited the highest energy efficiency. After packaging with a high-power LED chip with dimensions of 1 mm × 1 mm, a high luminous flux of 639 lm was generated, while the reduction in output power at 250 °C was as low as 6%. This indicated excellent high-temperature stability and potential for applications in solid-state lighting.  相似文献   

15.
High pyroelectric performance around human body temperature is essential for ultra-sensitive infrared detectors of medical systems. Herein, toward human health monitoring, composite ceramics (1-x)Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3/xAl2O3 (x = 0, 0.1, and 0.2) were designed. A metastable ferroelectric (FE) phase was induced in the anti-FE matrix by the Al2O3 component-induced internal stress, and in turn FE-anti-FE phase boundary was constructed. The ceramics at x = 0.2 exhibit high pyroelectric coefficient with p = 10.9 × 10−4 C·m−2·K−1 and figures of merit with current responsivity Fi = 6.23 × 10−10 m·V−1, voltage responsivity Fv = 12.71 × 10−2 m2·C−1, and detectivity Fd = 7.03 × 10−5 Pa−1/2 around human body temperature. Moreover, the enhanced pyroelectric coefficients exist in a broad operation temperature range with a large full width at half maximums of 18.5°C and peak value of 29.2 × 10−4 C·m−2·K−1 at 48.2°C. The designed composite ceramic is a promising candidate for infrared thermal imaging technology of noncontact human health monitoring system.  相似文献   

16.
Hexagonal boron nitride (h-BN) is an ideal candidate material for electrical and electronic systems due to its excellent performance. However, the addition of platelet-like h-BN leads to a dramatic increase of viscosity of composites and anisotropic thermal conductivity of composites. Herein, modified h-BN (m-BN) was coated onto spherical α-Al2O3 via chemical adhesive, and core-shell structured hybrid spherical filler (m-BN@Al2O3) was prepared. Furthermore, the microstructure, rheology, mechanical properties, and thermal conductivity of hybrid filler/polydimethylsiloxane (PDMS) were studied. At 60 vol% filler loading, the thermal conductivity of m-BN@Al2O3/PDMS is up to 2.23 W·m−1·K−1, which is 86% higher than that of Al2O3/PDMS and the ratio of in-plane diffusivity to through-plane diffusivity decreases from 2.0 to 1.0. At meanwhile, the viscosity of m-BN@Al2O3/PDMS is about one fourth of the viscosity of m-BN/Al2O3/PDMS. This simple and versatile strategy opens a pavement for enhancing the thermal conductivity of polymer and has great potential in high-frequency communication.  相似文献   

17.
《Ceramics International》2020,46(13):21156-21165
To improve the thermal and mechanical properties of Al2O3/AlN composite ceramics, a novel heterogeneous precipitation coating (HPC) approach was introduced into the fabrication of Al2O3/AlN ceramics. For this approach, Al2O3 and AlN powders were coated with a layer of amorphous Y2O3, with the coated Al2O3 and AlN powders found to favor the formation of an interconnected YAG second phase along the grain boundaries. The interconnected YAG phase was designed to act as a diffusion barrier layer to minimize the detrimental interdiffusion between Al2O3 and AlN particles. Compared with samples prepared by a conventional ball-milling method, the HPC Al2O3/AlN composites exhibited less AlON formation, a higher relative density, a smaller grain size and a more homogeneous microstructure. The thermal conductivity, bending strength, fracture toughness and Weibull modulus of the HPC Al2O3/AlN composite ceramics were found to reach 34.21 ± 0.34 W m−1 K−1, 475.61 ± 21.56 MPa, 5.53 ± 0.29 MPa m1/2 and 25.61, respectively, which are much higher than those for the Al2O3 and Al2O3/AlN samples prepared by the conventional ball-milling method. These results suggest that HPC is a more effective technique for preparing Al2O3/AlN composites with enhanced thermal and mechanical properties, and is probably applicable to other composite material systems as well.  相似文献   

18.
Graphene/ceramic composites are proposed by directly depositing graphene on the insulating Al2O3 particles by chemical vapor deposition without any metal catalysts. Carbothermic reduction occurring at the Al2O3 surface is vital during the initial stage of graphene nucleation and the graphene sheet can connect with neighboring sheets to completely cover Al2O3 particles. The quality and layer number of graphene on Al2O3 can be finely tailored by changing the growth temperature and gas ratio. Graphene coated Al2O3 (G-Al2O3) composites are used as effective fillers of stearic acid (SA) to increase the thermal transport property. By the optimization of the layer number of graphene, size of Al2O3 particles and ratio of G-Al2O3/SA in a quantitative, their thermal conductivities significantly increase up to 11 folds from 0.15 to 1.65 W m−1 K−1. The great improvement is attributed to the high thermal transfer performance of graphene and excellent wettability between graphene and SA. When the G-Al2O3/SA composites with the graphene coated porous Al2O3 foam, the thermal conductivity further reaches to 2.39 W m−1 K−1, and the corresponding latent heat is 38 J g−1. It demonstrates the potential applications of graphene in thermal transport and thermal energy storage devices.  相似文献   

19.
In order to meet the increasing demand of high-power light-emitting-diode (LED) lighting, state-of-the-art white light-emitting diode technology needs phosphors with high thermal conductivity and high luminous efficacy as color converters. In this work, translucent Al2O3-Ce:GdYAG composite phosphors were prepared by solid-state reactive sintering. The microstructure shows that the Al2O3 particles are uniformly dispersed in the Ce:GdYAG matrix. These particles can not only improve the thermal conductivity of the ceramics, but also promote the extraction efficacy. The luminous characteristics of the Ce:GdYAG and Al2O3-Ce:GdYAG ceramics were analyzed after being packaged with blue LED. When the molar ratio of Al2O3/Ce:GdYAG is 0.8, a high luminous efficacy value of 112.6 lm/W is achieved by the Al2O3-Ce:GdYAG composite ceramic phosphor with the thickness of 0.4 mm, as well as the highest CRI valve of 71.4. The appropriate photoelectric properties of this kind of ceramic phosphor make it a promising candidate for high-power LED device.  相似文献   

20.
As a promising replacement for nitride red phosphors, Ce: Y3(Mg1.8Al1.4Si1.8)O12 (Ce: YMASG) ceramic phosphors have attracted significant attention recently for their advantages in inorganic encapsulation and massive red-shifting of Ce3+ emission. In this work, Ce: YMASG with different doping concentrations of Ce3+ and Al2O3, was fabricated by vacuum sintering to investigate its effects on the elimination of the impurity phase and the enhancement of the luminescent properties of white light-emitting diodes (w-LEDs). It was discovered that the emission wavelength redshifts from 592 to 606 nm as the Ce3+ concentration increases, while at 450 K, the emission intensity deteriorates from 0.47 to 0.36 of its initial value. The Rietveld analysis revealed the presence of an impurity phase of Y4MgSi3O13 with a concentration of 17.021 wt% in Ce: YMASG. With the introduction of Al2O3, the impurity phase was eliminated from the matrix completely, the emission peak shifted to a shorter wavelength, and the thermal stability was greatly improved. When the correlated color temperature was controlled at around 3000 K in the packaged w-LEDs, the commission international de l'éclairage (CIE) chromaticity coordinates shifted toward the bottom left corner of the diagram with increasing concentration of Ce3+. Conversely, the luminous efficiency (LE) increased from 36 lm/W to 58.6 lm/W as the concentration of Al2O3 increased from 0 to 10 wt%, which demonstrated the application prospect of the fabricated phosphor in warm w-LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号