首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shear behaviors of two multicomponent borosilicate glasses, Borofloat®33 (Boro33) and N-BK7® (N-BK7), under different pressures are investigated using molecular dynamics simulations. The addition of alkali ions lowers the yield stress and changes the pressure dependence of shear modulus. Shear-induced densification is observed in both glasses. It is found that the decreases of the oxygen-centered bond angle and the coordination number change of B are responsible for the density changes at low pressures, and the increase of 5-coordinated Si is the dominant mechanism for densification at high pressures. The average shear stresses experienced by Si and B decrease with pressure except that the flow stress of Si at the end of shear deformation in N-BK7. Moreover, the average shear stress of B is more sensitive to the applied pressures compared to Si, suggesting that B is able to relax mechanical stress more easily under pressurized-shear. By analyzing the nonaffine displacement of atoms, it is found that N-BK7 exhibits more localized plastic deformation compared to Boro33 at low pressures and the local rearrangements in both glasses become more homogeneous with increasing pressure. The mean squared nonaffine displacement curves show that alkali ions have the highest mobility induced by shear compared to the network formers and B is more mobile than Si for both glasses. We also observed that plastic deformation tends to take place around boron atoms for Boro33, whereas it occurs in the alkali-rich regions for N-BK7, indicating that these two glasses have different atomic-scale deformation mechanisms.  相似文献   

2.
The mechanical response of multicomponent borosilicate glasses has drawn significant attention in the design of damage-resistant glasses. In this work, we investigate the plasticity of two borosilicate glasses, Borofloat®33 (Boro33) and N-BK7®, by implementing a uniaxial tension test using molecular dynamics simulations. A bond-switching mechanism is found to be responsible for the plastic response of both glasses and is governed by the increasing rate of non-bridging oxygen (NBO) production during the uniaxial tension. We found that the amount of B4OSi4 linkages in the glass governs the stress drop after yielding, due to its higher tendency to create NBOs compared to Si4OSi4. Also, the initial existence of NBOs weakens the critical stress for breaking the B4-O bond in B4OSi4, which in turn lowers the yield strength of the glass. The local atomic constraints are analyzed in the two glasses, and high anti-correlation between the concentration of rigid constraints and plastic deformation is observed.  相似文献   

3.
4.
In this study, hot-compression is applied to two multicomponent borosilicate glasses, Borofloat33 (Boro33) and N-BK7, using molecular dynamics simulations. The effects of pressure on elastic properties, surface energy, and fracture toughness ( are investigated. It is found that the impact on is mainly dominated by the change of Young's modulus under pressure, which is proportional to the relative change in density. Between the two glasses under investigation, can be improved more effectively by the hot-compression process for Boro33, due to its higher concentration of 3-coordinated boron (B3), which facilitates densification via B3 to B4 conversion under compression.  相似文献   

5.
The temperature dependence of glass relaxation has been intensively studied; however, the effect of an imposed pressure history on relaxation behavior is poorly understood. In this study, we subjected SCHOTT N-BK7® borosilicate glasses to isostatic compression in a Paterson press (PP) and a gas pressure chamber (GPC). The pressure ranged from 0.1 GPa to 2 GPa for various dwell temperatures and times near the glass transition region. Comparison with our recent results on the same glass using the piston-cylinder apparatus (PC, 0.5-1.5 GPa) reveals that the density of a glass, which has been quenched from the equilibrium state under high pressure at 2 K/min (pressure quench), increases approximately linearly with increasing pressure up to 2 GPa. Considering the volume recovery results at ambient pressure, we assert that the preceding high-pressure treatment in PC (uniaxial loading) generates a similar isostatic pressure effect on N-BK7 glass as those of PP and GPC treatments. Finally, we verify the previously proposed two-internal-parameter relaxation model on the volume recovery data using the three different compression methods. With a new set of parameters in the model, we can account for the pressure and temperature dependence of volume relaxation even for the samples quenched from nonequilibrium states at high pressure.  相似文献   

6.
Borofloat® borosilicate float glass and Starphire® soda-lime silicate float glass are used in transparent protective systems. They are known to respond differently in some ballistic and triaxial loading conditions, and efforts are underway to understand the causes of those differences. Toward that, a suite of test and material characterizations were completed in this study on both glasses so to identify what differences exist among them. Compositional, physical properties, elastic properties, flaw size distributions and concentrations, tensile/flexure strength, fracture toughness, spherical indentation and hardness, transmission electron microscopy, striae, high-pressure responses via diamond anvil cell testing, laser shock differences, and internal porosity were examined. Differences between these two float glasses were identified for many of these properties and characteristics, and the role of three (striae, high pressures where permanent densification can initiate, and submicrometer-sized porosity) lack understanding and deserve further attention. The contributing roles of any of those properties or characteristics to triaxial or ballistic loading responses are not definitive; however, they provide potential correlations that may lead to improved understanding and management of loading responses in glasses used in transparent protective systems.  相似文献   

7.
Spinel crystal formation presents a critical issue and glass formulation in nuclear waste glass processing. In this paper, the interfacial structures of the model borosilicate nuclear waste glasses, the international simple glass (ISG), with two types of spinel crystals, namely the MgAl2O4 and NiFe2O4, were studied using classical molecular dynamics simulations with effective partial charge potentials and recently developed composition-dependent boron-related parameters. The simulation results revealed the structural features of the borosilicate nuclear waste glasses and their interfaces with the two types of spinel crystals. It was found that there exist notable structural changes of glasses close to the interfacial region, affected by the adjacent crystal structures, terms of preferential segregation and ordering of cations, as well as ctaion coordination numbers. Specifically, the fraction of fourfold coordinated boron (B3) in glass near the interface decreases as compared to the bulk glass. In addition, the amount of fourfold coordinated Al decreases while fivefold Al increases in the glass region close to the glass-crystal interface, which suggests indication of initial stage of crystal growth as Al adopts higher (sixfold) coordination like in the crystal as compared to majority of fourfold coordination in the glass. These interfacial structure changes obtained from MD simulations provide evidence of the influence of the precipitated crystals on the surrounding melt and glass and the initial stage of crystal growth.  相似文献   

8.
We compute the bulk and surface structures of glasses in the germanium–selenium (Ge–Se) system using Monte Carlo simulations and our previously derived set of ab initio potentials. We investigate the elastic response of the Ge–Se glasses under a flat "micro"-indentation and incipient plasticity under a spherical nanoindentation. The glasses with a high average coordination number (〈 m 〉>2.4) display structural frustration owing to an excess of bond constraints, leading to permanent densification from both types of indentations. The glasses with a low average coordination number (〈 m 〉<2.4) exhibit a large number of floppy modes, enabling continuous shear flow. According to the Phillips theory of topological constraints, the ideal glass former is one in which the number of constraints exactly equals the number of degrees of freedom (GeSe4, where 〈 m 〉=2.4). In both types of indentation simulations, we find that the GeSe4 glass structure is most resistant to distortions of its basic structural unit.  相似文献   

9.
10.
Knowledge of the structure of lead (Pb)-bearing silicate glasses, such as degree of polymerization and arrangement among cations, provides improved prospects for understanding their macroscopic properties. Despite the importance, the detailed disorder in Pb-bearing silicate glasses with varying composition (i.e., Pb/alkali content) has not been systematically explored. Here, we reveal the first unambiguous structural information of PbO-Na2O-SiO2 glasses with varying PbO content [i.e., XPbO = PbO/(Na2O + PbO)], which are the fundamental model system for multicomponent Pb-bearing glasses, using high-resolution 17O solid-state NMR. 17O NMR spectra clearly show the resolved multiple oxygen sites, such as Na-O-Si, Si-O-Si, and [Na,Pb]-O-Si. As XPbO increases, the fraction of [Na,Pb]-O-Si peak increases markedly at the expanse of substantial reduction in the fraction of Na-O-Si/total NBO. This trend indicates the relative predominance of the dissimilar pairs around non-bridging oxygen (NBO) and, therefore, can be explained well with the pronounced chemical ordering among Na+ and Pb2+. These results confirm that Pb is primarily a network-modifier in the glasses studied here. Atomic environments around both NBO and BO are affected by the change in Na/Pb ratio, while topological disorder due to cation mixing around NBO is much more prominent in Pb endmember. The structural details of short-range configurations around oxygen in alkali Pb-silicate glasses provide atomistic insights for understanding the properties of Pb-bearing multicomponent silicate glasses.  相似文献   

11.
Molecular dynamics simulations of 7 compositionally different sodium calcium alumino‐borosilicate glasses showed formation of 4B and 5Al more consistent with experimental data without compromising the other structural features that match experimental results observed in recent simulations of these glasses. Analysis of the dry surfaces of these glasses show a lack of 4B in the top 5‐6 Å of the surface in comparison to the bulk concentration for all glasses and no 5Al. Upon exposure to water, the simulations show that the 3B in the top 5‐6 Å of the glasses are preferentially attacked, decreasing the number of B bonds to O originally from the glass, indicating a change in the glass network. Inclusion of all B–O bonds in the top 5‐6 Å (i.e., including O from water) shows a decrease in 3B but an increase in 4B that is consistent with NEXAFS analysis, which the simulations show are hydroxylated. There is an increase in the concentration of 3Al in the dry surface in comparison to the bulk, but exposure to water converts almost all of these 3Al to 4Al. Hydroxyl concentrations vary from 2.6/nm2 to 4.1/nm2, with SiOH and BOH dominating these surface hydroxyls. Upon exposure to water, network linkages to B are preferentially ruptured. This, and the preferential loss of the nonbridging oxygen sites attached to Na, provide atomistic evidence of the initial stages of removal of B and Na from glass surfaces exposed to water.  相似文献   

12.
Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence of R = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm as R increases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless of R and the leaching of modifier cations resulted in a silica-rich layer in the surface. The leaching of Ca2+ and Mg2+ ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function of R. The leaching of Na+ ions varied monotonically; the thickness of the Na+ depletion layer increased from ~100 nm at R = 0 to ~200 nm at R = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re-arrangement or re-polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution.  相似文献   

13.
Surface plays an important role in the physical and chemical properties of oxide glasses and controls the interactions of these glasses with the environment, thus dominating properties such as the chemical durability and bioactivity. The surface atomic structures of a series of sodium borosilicate glasses were studied using classical molecular dynamics simulations with recently developed compositional dependent partial charge potentials. The surface structural features and defect speciation were characterized and compared with the bulk glasses with the same composition. Our simulation results show that the borosilicate glass surfaces have significantly different chemical compositions and structures as compared to the bulk. The glass surfaces are found to be sodium enriched and behave like borosilicate glasses with higher R (Na2O/B2O3) values. As a result of this composition and associated structure changes, the amount of fourfold boron decreases at the surface and the network connectivity on the surface decreases. In addition to composition variation and local structure environment change, defects such as two‐membered rings and three‐coordinated silicon were also observed on the surface. These unusual surface composition and structure features are expected to significantly impact the chemical and physical properties and the interactions with the environments of sodium borosilicate glasses.  相似文献   

14.
15.
Molecular dynamics and related atomistic computer simulations are effective ways in studying the structures and structure–property relations of glass materials. However, simulations of boron oxide (B2O3)-containing oxide glasses pose a challenge due to the lack of reliable empirical potentials. This paper reports development of a set of partial charge pairwise composition-dependent potentials for boron-related interactions that enable simulations of multicomponent borosilicate glasses, together with some of the existing parameters. This set of potentials was tested in sodium borate glasses and sodium borosilicate glasses and it is shown capable to describe boron coordination change with glass composition in wide composition ranges. Structure features such as boron N4 value, density, Qn species distribution, fraction of non-bridging oxygen around boron and silicon, total correlation function, and bond angle distribution function were calculated and compared with available experimental data. Mechanical properties of the simulated glasses calculated with the new potential also show good agreement with experiments. Therefore, this new set of potential can be used to simulate boron oxide-containing multicomponent glasses including those with wide industrial and technology applications.  相似文献   

16.
The thermal stability of sol-gel-derived silica and borosilicate glasses exposed to dry O2 at 800 and 1200°C for 100 hours was characterized by weight change, thermal transitions, morphology, structure, and composition to investigate suitability as models for thermally grown oxides. Rapid weight loss was observed in the first few hours of isothermal exposure for borosilicate glasses, followed by constant weight loss at a low rate for the balance of the exposure. Weight loss resulted from loss of residual hydroxyl species retained from the sol-gel synthesis, and from oxidation of carbon retained from thermal decomposition of the organic precursors by pyrolysis. Characterization of the sol-gel-derived glasses showed structural similarities to silica and binary borosilicate glasses synthesized by melt or vapor deposition methods, and to thermally grown oxides. Oxygen transport mechanisms through the sol-gel-derived glasses is not thought to be affected by the retained carbon. However, a silica-enriched glass surface resulting from boria volatility, observed from a borosilicate glass exposed dry O2 at 1200°C, will slow O2 transport rates. The results show that sol-gel-derived silica and borosilicate glasses can be used as models for thermally grown oxides.  相似文献   

17.
Mixtures of a cross‐linked polyacrylic acid (Carbopol® 940) and two types of surfactants, namely anionic sodium dodecylsulfate (SDS) and nonionic Tween® 80, were investigated by viscometry, conductometry, tensiometry, spectrophotometry, fluorimetry and scanning electron microscopy (SEM). The addition of nonionic surfactant decreased the reduced viscosity and the transmittance of the Carbopol® polymer aqueous solutions. Furthermore, the interaction between Carbopol® 940 and SDS was characterized by two significant concentration values: the critical aggregation concentration of SDS was particularly independent of Carbopol® polymer concentration while the polymer saturation point of both surfactants increased with the increase in polymer content. The values of critical aggregation concentration and polymer saturation point obtained using various techniques confirmed the occurrence of Carbopol® polymer–surfactant associations. The effect of different SDS and Tween® 80 concentrations on the conformation of Carbopol® 940 in aqueous solution could be explained through hydrophobic association between surfactant micelles and Carbopol® polymer tails and through hydrogen bonding in the case of Tween® 80. Additionally, the surfactant‐induced structural changes were confirmed in Carbopol® 940–SDS and Carbopol® 940–Tween® 80 aqueous solutions by SEM measurements.  相似文献   

18.
High-alumina containing high-level waste (HLW) will be vitrified at the Waste Treatment Plant at the Hanford Site. The resulting glasses, high in alumina, will have distinct composition-structure-property (C-S-P) relationships compared to previously studied HLW glasses. These C-S-P relationships determine the processability and product durability of glasses and therefore must be understood. The main purpose of this study is to understand the detailed structural changes caused by Al:Si and (Al + Na):Si substitutions in a simplified nuclear waste model glass (ISG, international simple glass) by combining experimental structural characterizations and molecular dynamics (MD) simulations. The structures of these two series of glasses were characterized by neutron total scattering and 27Al, 23Na, 29Si, and 11B solid-state nuclear magnetic resonance (NMR) spectroscopy. Additionally, MD simulations were used to generate atomistic structural models of the borosilicate glasses and simulation results were validated by the experimental structural data. Short-range (eg, bond distance, coordination number, etc) and medium-range (eg, oxygen speciation, network connectivity, polyhedral linkages) structural features of the borosilicate glasses were systematically investigated as a function of the degree of substitution. The results show that bond distance and coordination number of the cation-oxygen pairs are relatively insensitive to Al:Si and (Al + Na):Si substitutions with the exception of the B-O pair. Additionally, the Al:Si substitution results in an increase in tri-bridging oxygen species, whereas (Al + Na):Si substitution creates nonbridging oxygen species. Charge compensator preferences were found for Si-[NBO] (Na+), [3]B-[NBO] (Na+), [4]B (mostly Ca2+), [4]Al (nearly equally split Na+ and Ca2+), and [6]Zr (mostly Ca2+). The network former-BO-network former linkages preferences were also tabulated; Si-O-Al and Al-O-Al were preferred at the expense of lower Si-O-[3]B and [3]B-O-[3]B linkages. These results provide insights on the structural origins of property changes such as glass-transition temperature caused by the substitutions, providing a basis for future improvements of theoretical and computer simulation models.  相似文献   

19.
The structure of borosilicate glasses is studied with 11B and 29Si NMR spectroscopy in order to investigate the influence of replacement of Na2O by oxides of alkali earth metals on their local structure. The quantitative data are analyzed with respect to their correspondence to the criterion of the average charge of the structural unit. The reasons for the deviation between the experimental results and this criterion are considered. It is shown that, in the case of glass devoid of borate structural units with nonbridging oxygen atoms, the corrected contents of these units are consistent with the predictions of thermodynamic modeling of the structure and properties of oxide glasses.  相似文献   

20.
Borosilicate glasses incorporating high-level nuclear waste are exposed to high-energy radiations during their storage in the deep geological repositories. However, the effect of radiation on the atomic structure of borosilicate glasses remains poorly understood. Herein, using molecular dynamics simulations, we study the irradiation-induced structural changes of a series of calcium-sodium borosilicate glasses with varying Si/B molar ratios—ranging from pure silicate to pure borate glasses. We observe that irradiation leads to an increase in disorder, both in the short- and medium-range, as evidenced by the enthalpy, coordination number, and ring distribution. In particular, the impact of the change in the atomic structure (due to radiation) on the glass volume is investigated. Interestingly, we observe a composition-dependent transition in the volumetric response of borosilicate glasses under irradiation—wherein borate-rich compositions tend to swell, whereas silica-rich glasses tend to densify. Through a detailed analysis of the structure, we demonstrate two competing mechanisms contributing to the volume change, i.e., a decrease in the coordination number of boron atoms and a reduction in the average silicon inter-polytope angle. We also show that the increase in the disorder in the medium-range order may play a major role in governing the volumetric changes in the irradiated structure in a non-trivial fashion. Altogether, the present study highlights that irradiation has a non-trivial effect on borosilicate glasses, which, in turn, could impact their corrosion kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号