首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eutectic TiB2-TiC composite ceramics were prepared by combustion synthesis under high gravity. XRD, SEM, and EDS results showed that TiB2-TiC composites were mainly composed of the eutectic microstructures of a TiC matrix in which a large number of fine TiB2platelet grains were dispersed uniformly; meanwhile, at the boundaries of the eutectic microstructures, discontinuously dispersed ?-carbides enriched in Ti atoms, and a few isolated irregular α-Al2O3 grains and Al2O3-ZrO2 colonies were observed. Because high-temperature chemical reaction results in fully liquid products, the application of high gravity induces the Stocks flow in the melts, which leads to the formation of layered melts consisting of liquid Ti-Cr-C-B melt and liquid oxides. Therefore, it is considered that TiB2-TiC composites grow through eutectic transformation far away from the equilibrium state. The results of properties measurements indicate that, with increasing mass fraction of B4C + Ti + C in combustion systems, the relative density and fracture toughness of TiB2-TiC composites are all among 97–99% and 6.5–7.1 MPa m1/2, respectively, and the Vickers hardness and flexural strength are increased gradually to the maximum values of 28.6 GPa and 615 MPa, respectively. The achievement of full-density TiB2-TiC composites benefited from the design of fully liquid SHS products and application of high-gravity field, a high hardness of the composite ceramics resulted from the absence of intermediate borides, the achievement of stoichiometric TiC phases is due to rapid solidification, whereas a high flexural strength of the composite ceramics benefited from the homogenization and refinement of the microstructures due to the rapid separation of the liquid oxides and the rapid coupled growth of TiB2-TiC.  相似文献   

2.
This work aims to enhance the fracture toughness of brittle Al2O3 ceramics and apply insulated Al2O3 ceramics with electrical conductivity by dispersing second tungsten (W) metal particles. In order to investigate the effects of W dispersion on mechanical and electrical properties, Al2O3–W composites with various amounts of W (ranging from 5 vol% to 20 vol%) were fabricated by the hot-press sintering method at various sintering temperatures. Microstructure analysis revealed submicron Al2O3 matrix grains and W particles. The existence of three phases of Al2O3, W, and AlWO4 was confirmed by X-ray diffraction patterns. All Al2O3–W composites showed higher fracture toughness than monolithic Al2O3. The toughening mechanism was attributed to crack deflection and crack bridging. Transgranular fracture was visible in all composites. Electrical resistivity dramatically lowered from 2.9 × 1012 Ω cm of monolithic Al2O3 to 4.1 × 102 Ω cm of the composite with 20 vol% W addition. The percolation threshold is calculated as 18.5%. With the increase in sintering temperature, the amount of W particles was decreased and Al2O3 grains became large, leading to the reduced number of conductive pathways formed by the dispersed W particles. As a result, electrical conductivity was decreased.  相似文献   

3.
This study addressed novel multiphase composite of Al2O3/Ti/TiC that exhibited enhanced fracture toughness and room-temperature crack-healing function. Al2O3/Ti/TiC composites were fabricated through hot-press sintering of CNT, TiH2, and Al2O3 mixed powders, where the TiC was in-situ formed by reaction of CNT and Ti. The effects of CNT (TiC) content on mechanical and electrical properties were studied. Electrochemical anodization process at room temperature was attempted to these composites to heal cracks introduced in the surface of composites. Results indicated that added CNT was invisible while metal Ti and reaction product TiC coexisted in all samples. The reaction between CNT and Ti[O] representing dissolved active oxygen into Ti was considered as the main formation route of TiC. The toughening mechanism was demonstrated as crack deflection and bridging due to the presence of TiC. In spite of the increase in electrical resistivity because of the higher resistivity of TiC than Ti, the present Al2O3/Ti/TiC composites still remain high enough electrical conductivity (8.0 × 10−3 Ωcm ~1.8 × 10−2 Ωcm for 0-2 vol% CNT addition) which could be regarded as conductors; it allowed to heal cracks in the composites by electrochemical anodization that formed titanium dioxide phase at room temperature. It was found that crack-healing ability in 1 vol% CNT added composite exhibited higher strength recovery ratio of 95.6% to the crack-free sample than that of Al2O3/Ti composite (the recovery ratio of 89.6%). After crack-healing process, mechanical strength of samples increased by 52.3% compared to cracked composites. It was concluded that the formed TiC could contribute to the appropriate electrical conduction as well as interface strengthening in the Al2O3/Ti composites. Furthermore, it was firstly speculated that the TiC could be electrochemically anodized to form an oxide like Ti metal. These characteristics enable Al2O3/Ti/TiC composites as the crack-healing materials at room temperature.  相似文献   

4.
Al2O3/Ti composites containing 0‐30 vol% dispersed fine Ti particles were fabricated using a hot‐press sintering method at 1500°C from mixtures of Al2O3 and TiH2 powders. During sintering, TiH2 decomposed to form metallic Ti. The effects of the Ti content on the mechanical and electrical properties of the composites were then investigated. No Ti‐Al intermetallic compounds were detected by X‐ray diffraction, and energy‐dispersive X‐ray spectroscopy indicated the presence of Al‐Ti‐O solid solution and Ti‐O phases. The composites showed enhanced densification; the measured densities were higher than the calculated theoretical values. Microstructural observation revealed homogeneously distributed fine Ti particles dispersed in the Al2O3 matrix. The Ti particle size ranged from submicrometer to a few micrometers depending on the Ti content. The fracture mode of the composites was primarily transgranular, in contrast to the intergranular fracture mode of monolithic Al2O3. Although the flexural strength was decreased with increase in Ti content, the composite containing 20 vol% Ti displayed the maximum fracture toughness of 4.3 MPa·cm1/2, which was 37% greater than that of monolithic Al2O3. The composites containing more than 15 vol% Ti exhibited drastic decreases in resistivity (~10?1 Ωcm), which were attributed to the formation of interconnected Ti networks at these Ti contents. The percolation threshold volume for electrical conduction in the present system was calculated to be 13.8 vol%. The results indicate that dispersing fine Ti particles into Al2O3 increased the fracture toughness and improved the conductivity of Al2O3.  相似文献   

5.
The paper describes the structure and properties of preceramic paper-derived Ti3Al(Si)C2-based composites fabricated by spark plasma sintering. The effect of sintering temperature and pressure on microstructure and mechanical properties of the composites was studied. The microstructure and phase composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. It was found that at 1150 °C the sintering of materials with the MAX-phase content above 84 vol% leads to nearly dense composites. The partial decomposition of the Ti3Al(Si)C2 phase becomes stronger with the temperature increase from 1150 to 1350 °C. In this case, composite materials with more than 20 vol% of TiC were obtained. The paper-derived Ti3Al(Si)C2-based composites with the flexural strength > 900 MPa and fracture toughness of >5 MPa m1/2 were sintered at 1150 °C. The high values of flexural strength were attributed to fine microstructure and strengthening effect by secondary TiC and Al2O3 phases. The flexural strength and fracture toughness decrease with increase of the sintering temperature that is caused by phase composition and porosity of the composites. The hardness of composites increases from ~9.7 GPa (at 1150 °C) to ~11.2 GPa (at 1350 °C) due to higher content of TiC and Al2O3 phases.  相似文献   

6.
TiC颗粒弥散Al2O3复合材料的阻力曲线行为   总被引:2,自引:0,他引:2  
研究了TiC颗粒弥散AI2O3复合材料的阻力曲线行为,发现TiC颗粒对AI2O3基体的增韧效果在很大程度上取决于TiC颗粒的尺寸,在TiC颗凿尺寸较小的情况下,复3事材料的断裂韧性与AI2O3着TiC颗粒尺寸的增大而增大,本工作 地裂纹扩展途径的观察,简要讨论了TiC颗粒弥散AI2O3复合材料中的增韧机制。  相似文献   

7.
Al2O3-TiB2-TiC ceramic coatings with high microhardness and wear resistance were fabricated on the surfaces of carbon steel substrates by laser cladding using different coating formulations. The microstructures of these ceramic coatings with the different coating formulations were investigated using X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometer. The wear resistance and wear mechanism were analyzed using Vickers microhardness and sliding wear tests. The results showed that when the amount of independent Al2O3 was increased to 30%, the ceramic coatings had a favorable surface formation quality and strong metallurgical bond with the steel matrix. The cladding layer was uniformly and densely organized. The black massive Al2O3, white granular TiB2, and TiC distributed on the Fe substrate significantly increased the microhardness and wear resistance. The laser cladding ceramic coating had many hard strengthening phases, and thus resisted the extrusion of rigid particles in frictional contact parts. Therefore, the wear process ended with a “cutting-off” loss mechanism.  相似文献   

8.
Ti3AlC2/Al2O3 in situ composites with different Al2O3 contents were successfully synthesized from the powder mixture of Ti, TiC, Al and TiO2 by a reactive hot-pressing method at 1350 °C. The effect of Al2O3 on the microstructure and mechanical properties of the composites was investigated in detail. The results indicate that the as-fabricated products mainly consist of Ti3AlC2, Al2O3 and a small amount of TiC. With increasing the Al2O3 content, the flexural strength of Ti3AlC2/Al2O3 composites increase gradually, the fracture toughness reaches the peak value of 8.21 MPa m1/2 as the Al2O3 content increasing to 9 wt%, the hardness attains the maximum value of 10.16 GPa for 12 wt% Al2O3. The strengthening mechanism of the composites was also discussed.  相似文献   

9.
《Ceramics International》2017,43(13):10224-10230
Whiskers and nanoparticles are usually used as reinforcing additives of ceramic composite materials due to the synergistically toughening and strengthening mechanisms. In this paper, the effects of TiC nanoparticle content, particle size and preparation process on the mechanical properties of hot pressed Al2O3-SiCw ceramic tool materials were investigated. The results showed that the Vickers hardness and fracture toughness of the materials increased with the increasing of TiC content. The optimized flexural strength was obtained with TiC content of 4 vol% and particle size of 40 nm. The particle size has been found to have a great influence on flexural strength and small influence on hardness and fracture toughness. It was concluded that the flexural strength increased remarkably with the decreasing of the TiC particle size, which was resulted from the improved density and refined grain size of the composite material due to the dispersion of the smaller TiC particle size. SEM micrographs of fracture surface showed the whiskers to be mainly distributed along the direction perpendicular to the hot-pressing direction. The fracture toughness was improved by whisker crack bridging, crack deflection and whisker pullout; the TiC nanoparticles in Al2O3 grains caused transgranular fracture and crack deflection, which improved the flexural strength and fracture toughness with whiskers synergistically. Uniaxial hot-pressing of SiC whisker reinforced Al2O3 ceramic composites resulted in the anisotropy of whiskers’ distribution, which led to crack propagation differences between lateral crack and radical crack.  相似文献   

10.
An Al2O3-based composite ceramic tool material reinforced with micro-scale and nano-scale TiC particles was fabricated by a hot-pressing technology with cobalt additive in different sintering processes. The microstructure, indention cracks and phase composition of composites were characterized with scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The experimental results showed that Al2O3/TiCμ/TiCn micro–nano-composite containing 6 vol% nano-scale TiC and 35 vol% micro-scale TiC, which were sintered under a pressure of 32 MPa at a temperature of 1650 °C in vacuum for 20 min, had optimum mechanical properties. The addition of both nano-scale TiC and Co contributed to the microstructure evolution and the improvement of mechanical properties. Effects of nano-scale TiC on mechanical properties were investigated. The toughening and strengthening mechanisms of micro–nano-composites were discussed.  相似文献   

11.
The thermomechanical behavior of micro/nano-alumina (Al2O3) ceramics reinforced with 1-5 wt.% of acid-treated oil fly ash (OFA) was investigated. Composites were sintered using spark plasma sintering (SPS) technique at a temperature of 1400°C by applying a constant uniaxial pressure of 50 MPa. It was evaluated that the fracture toughness of micro- and nanosized composites improved in contrast with the monolithic alumina. Highest fracture toughness value of 4.85 MPam1/2 was measured for the nanosized composite reinforced with 5 wt.% OFA. The thermal conductivity of the composites (nano-/microsized) decreased with the increase in temperature. However, the addition of OFA (1-5 wt.%) in nanosized alumina enhanced the thermal conductivity at an evaluated temperature. Furthermore, a minimum thermal expansion value of 6.17 ppm*K−1 was measured for nanosized Al2O3/5 wt.% OFA composite. Microstructural characterization of Al2O3-OFA composites was done by x-ray diffraction and Raman spectroscopy. Oil fly ash particles were seen to be well dispersed within the alumina matrix. Moreover, the comparative analysis of the nano-/microsized Al2O3/OFA composites shows that the mechanical and thermal properties were improved in nanosized alumina composites.  相似文献   

12.
Al2O3 particle-reinforced Cr2AlC in situ composites were successfully fabricated from powder mixtures of Cr3C2, Cr, Al, and Cr2O3 by a reactive hot-pressing method at 1400 °C. A possible synthesis mechanism was proposed to explain the formation of the composites in which Al2O3 was formed by the aluminothermic reaction between Al and Cr2O3, meanwhile, Cr3C2, Al, together with Cr reacted to form Cr2AlC in a shortened reaction route. The effect of Al2O3 addition on the microstructure and mechanical properties of Cr2AlC/Al2O3 composites was investigated. The results indicated that the as-sintered products consisted of Cr2AlC matrix and Al2O3 reinforcement, and the in situ formed fine Al2O3 particles dispersed at the matrix grain boundaries. The flexural strength and Vickers hardness of the composites increased gradually with increasing Al2O3 content. But the fracture toughness peaked at 6.0 MPa m1/2 when the Al2O3 content reached 11 vol.%. The strengthening and toughening mechanism was also discussed.  相似文献   

13.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   

14.
Al2O3/TiC ceramic composites with the additions of CaF2 solid lubricants were produced by hot pressing. The effect of the solid lubricant on the microstructure and mechanical properties of the ceramic composite has been studied. The friction coefficient and wear rates were measured using the ring-block method, and the tribological behaviors were discussed in relation to its mechanical properties and microstructure. Results showed that additions of CaF2 solid lubricants to Al2O3/TiC matrix led to a decrease in the flexural strength, fracture toughness, and hardness compared to a conventional Al2O3/TiC composite. The friction coefficient of Al2O3/TiC/CaF2 ceramic composites when sliding against both cemented carbide and hardened steel decreased with an increase in CaF2 content up to 15 vol.%. The reason is that the CaF2 released and smeared on the wear surface, and acted as solid lubricant film between the sliding couple. When the content of CaF2 solid lubricant is less than 10 vol.%, the wear rate of Al2O3/TiC/CaF2 composites decreases with an increase in CaF2 content, with further increases in CaF2 content, the wear rate of Al2O3/TiC/CaF2 composites increases rapidly. This is due to the large degradation of mechanical properties in samples with high CaF2 contents.  相似文献   

15.
《Ceramics International》2020,46(12):20068-20080
In this study, Al2O3–TiC composites synergistically reinforced with multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were prepared via spark plasma sintering (SPS). The effects of the MWCNT and GNP contents on the phase composition, mechanical properties, fracture mode, and toughening mechanism of the composites were systematically investigated. The experimental results indicated that the composite grains became more refined with the addition of MWCNTs and GNPs. The nanocomposites presented high compactness and excellent mechanical properties. The composite with 0.8 wt% MWCNTs and 0.2 wt% GNPs presented the best properties of all analysed specimens, and its relative density, hardness, and fracture toughness were 97.3%, 18.38 ± 0.6 GPa, and 9.40 ± 1.6 MPa m1/2, respectively. The crack deflection, bridging, branching, and drawing effects of MWCNTs and GNPs were the main toughening mechanisms of Al2O3–TiC composites synergistically reinforced with MWCNTs and GNPs.  相似文献   

16.
《Ceramics International》2016,42(16):17990-17996
Spark Plasma Sintering (SPS) has attracted a lot of interest in recent years owing to its ability to enable the densification of a broad range of materials in a very short processing time. It is well documented in the literature that the very high heating rates that can be applied with this technology can lead to the apparition of large thermal gradients in the tool and thus affect the homogeneity of the compact.In the present study, the influence of the compact thermal and electrical properties on the thermal gradients was studied. Al2O3, AlN and TiC powders were used to produce series of Al2O3-TiC and AlN-TiC composites (0, 25, 50, 75, 100 vol%TiC) showing different electrical and thermal conductivities. Two pyrometers were used in order to observe and measure the thermal gradients and the percolation of the current during sintering at a high heating rate and without insulation.Electrical conductivity measurements were carried out on samples presenting different relative densities. This samples were obtained through interrupted sintering cycles at temperatures below and above the identified percolation threshold temperature.It was shown that high thermal gradients can appear during SPS depending on the processing parameters (dimensions of the die and heating rate) but also on the composition of the compact (proportion of conductive phase) and on its density.  相似文献   

17.
《Ceramics International》2017,43(14):10983-10990
To improve fracture toughness of monolithic Al2O3 ceramics, three-dimensional carbon fiber preform was used as reinforcement, and the C/Al2O3 composites without interfacial coating were fabricated through vacuum impregnation-drying-heat treatment route with an Al2O3 sol as starting material. Characteristics of the Al2O3 sol with high solid content were firstly analyzed. Then thermal stability and oxidation resistance of the C/Al2O3 composites were investigated. It is found that the Al2O3 sol is an appropriate raw material for the fabrication of C/Al2O3 composites. The C/Al2O3 composites with a total porosity of 15.5% show a flexural strength of 208.5 MPa and a fracture toughness of 8.1 MPa m1/2. Strength loss is observed after the composites were annealed at 1400 °C and 1600 °C under inert atmosphere. Oxidation resistance of the C/Al2O3 composites is unsatisfactory because of the existence of open pores and microcracks. When Al2O3 matrix was modified with SiO2, the oxidation resistance is remarkably improved due to the viscous flow effect of SiO2.  相似文献   

18.
《Ceramics International》2022,48(24):36824-36834
The (Al3Ti + Al2O3)/Al–Si composites with three-dimensional co-continuous network structures are fabricated by a pore-forming agent and the pressure infiltration technique. The effect of the Al3Ti content on the mechanical and wear properties of the developed composites is investigated. The Al2O3 (alumina) formation, fracture, and wear mechanisms of the composites are also analyzed. The results demonstrate that the granular Al2O3 particles scatter around Al3Ti phases which are synthesized in-situ during the sintering process. The 20 vol.% (Al3Ti + Al2O3)/Al–Si composites possess the optimal mechanical properties, i.e., compressive and flexural strength of 585 MPa and 489 MPa, respectively, which are 64.8% and 46.0% higher than those of the matrix. The specific wear rate of the composites (16.5 × 10?14 m3/Nm) is 79% lower than that of the matrix. By further increasing the Al3Ti content, the network structure is completed, the wear resistance properties are improved, while the mechanical properties are decreased. The enhanced mechanical properties can primarily be attributed to the three-dimensional co-continuous network structure of the Al3Ti and Al2O3 phases, as well as the pinning effect of Al2O3 particles.  相似文献   

19.
Natural composites have very simple compositions and complex hierarchical architectures consisting of several different levels. These features simultaneously endow them with strength, toughness, functional adaptation, and damage-healing characteristics. Inspired by the microstructural features of natural materials, this work successfully fabricated Al2O3/reduced graphene oxide (rGO) fibrous monolithic ceramics with bamboo-like structures by introducing a thin graphene oxide around Al2O3 fiber cells to form the rGO boundary phase. The detailed evolutions of the crack extension and fracture responses were investigated by a J-integral method, and these bamboo-like composites demonstrated high structural reliability with excellent damage tolerance and progressive plastic failure behavior. With the fiber cell diameter of 0.6 mm, such composites exhibited fracture toughness (29.46 ± 3.04 MPa m1/2) and work of fracture (799 ± 127 J m−2) that were 475% and 1075% higher than those of the monolithic Al2O3 ceramic, respectively. Their excellent fracture-resistant behavior was attributed to the hierarchical architectures that provide crack deflection, delamination, and load redistribution. The results also established the structure-activity relationships to guide the design and fabrication of these bamboo-like composites.  相似文献   

20.
This article presents the results of an experimental study on the preparation and properties of new ternary composites composed of nano‐Al2O3 particles, polyester, and epoxy resin. The ternary composites were prepared by the addition of the nano‐Al2O3 particles in a binary matrix, with elevated viscosity, of the epoxy resin modified by the polyester. The nano‐Al2O3 particles were previously located and dispersed in the polyester phase. The study showed that the ternary system was a type of nanoscale dispersed composite with high strength and toughness as well as modulus, combined with excellent dielectric and heat‐resistance properties. All related properties of the composites were remarkably superior to those of both the binary matrix and the unmodified epoxy resin. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 70–77, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号