首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, SiC nanowires (SiCNWS) were grown in situ on the surface of PyC interface through chemical vapor infiltration (CVI) to improve the mechanical characteristics and thermal conductivity of three-dimensional SiCf/SiC composites fabricated via precursor infiltration pyrolysis (PIP). The effect of SiCNWS on the properties of the obtained composites was investigated by comparing them with conventional SiCf/PyC/SiC composites. After the deposition of SiCNWS, the flexural strength of the SiCf/SiC composites was found to increase by 46 %, and the thermal conductivity showed an obvious increase at 25?1000 °C. The energy release of the composites in the damage evolution process was analysed by acoustic emission. The results indicated that the damage evolution process was delayed owing to the decrease in porosity, the crack deflection and bridging of the SiCNWS. Furthermore, the excellent thermal conductivity was attributed to the thermally conductive pathways formed by the SiCNWS in the dense structure.  相似文献   

2.
Chemical-vapor-infiltrated (CVI) SiC/SiC composites with Sylramic?-iBN SiC fibers and CVI carbon, BN, and a combination of BN/C interface coating were heat treated in 0.1-MPa argon or 6.9-MPa N2 at temperatures to 1800 °C for exposure times up to 100 hr. The effects of thermal treatment on constituent microstructures, in-plane tensile properties, in-plane and through-the-thickness thermal conductivities, and creep behavior of the composites were investigated. Results indicate that heat treatment affected stoichiometry of the CVI SiC matrix and interface coating microstructure, depending on the interface coating composition and heat treatment conditions. Heat treatment of the composites with CVI BN interface in argon caused some degradation of in-plane properties due to the decrease in interface shear strength, but it improved creep resistance significantly. In-plane tensile property loss in the composites can be avoided by modifying the interface composition and heat treatment conditions.  相似文献   

3.
The influence of high-temperature argon heat-treatment on the microstructure and room- temperature in-plane tensile properties of 2D woven CVI and 2D unidirectional MI SiC/SiC composites with Hi-Nicalon?-S SiC fibers was investigated. The 2D woven CVI SiC/SiC composites were heat-treated between 1200 and 1600 °C for 1- and 100-hr, and the 2D unidirectional MI SiC/SiC composites between 1315 and 1400 °C for up to 2000 hr. In addition, the influence of temperature on fast fracture tensile strengths of these composites was also measured in air. Both composites exhibited different degradation behaviors. In 2D woven CVI SiC/SiC composites, the CVI BN interface coating reacted with Hi-Nicalon?-S SiC fibers causing a loss in fast fracture ultimate tensile strengths between 1200 and 1600 °C as well as after 100-hr isothermal heat treatment at temperatures > 1100 °C. In contrast, 2D unidirectional MI SiC/SiC composites showed no significant loss in in-plane tensile properties after the fast fracture tensile tests at 1315 °C. However, after isothermal exposure conditions from 1315° to 1400°C, the in-plane proportional limit stress decreased, and the ultimate tensile fracture strain increased with an increase in exposure time. The mechanisms of strength degradation in both composites are discussed.  相似文献   

4.
《Ceramics International》2020,46(9):13088-13094
Continuous silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites have promising applications in aero-engine due to their unique advantages, such as low density, high modulus and strength, outstanding high temperature resistance and oxidation resistance. As SiC fibers are main reinforcements in SiCf/SiC composites, the crystallization rate and initial damage degree of SiC fibers are seriously influenced by preparation temperatures of SiCf/SiC composites, namely mechanical properties of SiC fibers and SiCf/SiC composites are influenced by preparation temperatures. In this paper, KD-II SiC fibers were woven into 3D4d preforms and SiC matrix was fabricated by PIP process at 1100 °C, 1200 °C, 1400 °C and 1600 °C. Digital image correlation (DIC) method was adopted to measure the uniaxial tensile properties of these SiCf/SiC composites. In addition, finite element method (FEM) based on representative volume element (RVE) was adopted to predict the mechanical properties of SiCf/SiC composites. The good agreements between numerical results and experimental results of uniaxial tensile tests verified the validity of the RVE. In last, the transverse tensile, transverse shear, uniaxial shear properties were predicted by this method. The predicted results illustrated that axial tensile, transverse tensile and axial shear properties were greatly influenced by the preparation temperatures of SiCf/SiC composites while transverse shear properties were not significantly various. And the mechanical properties of SiCf/SiC composites peaked at 1200 °C among these four temperatures while their values reached their lowest points at 1600 °C because of thermal damage and brittle failure of SiCf/SiC composites.  相似文献   

5.
《Ceramics International》2022,48(11):15189-15199
Porous SiC ceramics have recently attracted wide attention for their applications in the electrically heatable filter. Further improvement of the thermal and electrical conductivity without sacrificing permeability is a critical parameter for such applications. In the present work, porous SiC/Ti3SiC2 ceramic composites with Ti3SiC2 and micro/nano SiC have been prepared from TiC/Si/α-SiC mixtures at a low sintering temperature (1400 °C). Nano-laminated Ti3SiC2 enhanced the electrical conductivity, while the good thermal conductivity was achieved through in-situ formed nano β-SiC and raw coarse α-SiC in the porous ceramics. Along with the increase of initial α-SiC particle size from 0.76 to 16.13 μm, the permeability, thermal and electrical conductivity improved due to the decreased porosity and increased pore size in porous SiC/Ti3SiC2 ceramics. The results suggested that the decoupling of the electrical conductivity from the thermal conductivity could be tuned by adjusting the initial α-SiC particle size.  相似文献   

6.
Additive-free boron carbide (B4C) – silicon carbide (SiC) ceramic composites with different B4C and β-SiC powders ratio were densified using the high-pressure “anvil-type with hollows” apparatus at 1500 °C under a pressure of 4 GPa for 60 s in air. The effect of starting powders ratio on the composites sintering behavior, relative density, microstructural development, and thermomechanical properties was studied. The sintered samples hardness was found to be in the range from 24 to 31 GPa. The thermal conductivity measurements, conducted in the temperature range from room temperature to 1000 °C, showed that the thermal diffusivity of sintered samples was between 6 and 9.5 mm2/s whereas the thermal conductivity was in the range from 16 to 28 W/(m K). The results of this study show that the high-pressure sintering can be a very effective low-temperature densification method for the obtainment of additive-free B4C - β-SiC ceramic composites.  相似文献   

7.
Electrospun unidirectional SiC fibers reinforced SiCf/SiC composites (e-SiCf/SiC) were prepared with ∼10% volume fraction by polymer infiltration and pyrolysis (PIP) process. Pyrolysis temperature was varied to investigate the changes in microstructures, mechanical, thermal, and dielectric properties of e-SiCf/SiC composites. The composites prepared at 1100 °C exhibit the highest flexural strength of 286.0 ± 33.9 MPa, then reduced at 1300 °C, mainly due to the degradation of electrospun SiC fibers, increased porosity, and reaction-controlled interfacial bonding. The thermal conductivity of e-SiCf/SiC prepared at 1300 °C reached 2.663 W/(m∙K). The dielectric properties of e-SiCf/SiC composites were also investigated and the complex permittivities increase with raising pyrolysis temperature. The e-SiCf/SiC composites prepared at 1300 °C exhibited EMI shielding effectiveness exceeding 24 dB over the whole X band. The electrospun SiC fibers reinforced SiCf/SiC composites can serve as a potential material for structural components and EMI shielding applications in the future.  相似文献   

8.
Aimed to enhance the high-temperature service performance of C/SiC composites in high-speed aircraft thermal protection system, in this article, pitch-based carbon fibers were used to construct high thermal conductive channels to improve the heat transfer capability of C/SiC composites. The results revealed that the as-prepared composites equipped with 4.7 times higher thermal conductivity than that of conventional C/SiC composites. The oxyacetylene flame ablation test confirmed that the constructed high thermal conductive channels, which quickly conducted the heat flow from the ablation center area to other areas is the main reason of as-prepared composites exhibiting a very impressive ablation resistance property. Briefly, the ablation temperature of the as-prepared composite surfaces considerably dropped by about 300°C compared with conventional C/SiC composites, while the linear ablation rate and mass ablation rate of the composites are 1.27 μm/s and 0.61 mg/s respectively, which is superior to many recent reports, demonstrating that this article provides a simple but highly effective measure to improve the ablation resistance property of C/SiC composites.  相似文献   

9.
Silicon carbide (SiC) foam prepared by polymer infiltration and pyrolysis (PIP) process was further densified with β-SiC by chemical vapor infiltration (CVI) technique. Scanning electron microscopy and high-resolution transmission electron microscopy images confirmed the presence of highly entangled and branched in situ grown SiC wires of uniform diameter (∼500 nm) over the struts of open-cell SiC foam. A uniform rate increase in diameter from nanometer to micron range (∼11 μm) was observed with an increase in the CVI reaction period. X-ray diffraction results showed the formation of highly crystalline β-SiC structure along the <111> direction with stacking faults. The formation of SiC wires was explained by the vapor–liquid–solid mechanism and evenness of the surface and uniform growth rate of SiC confirmed the homogeneous concentration of gaseous species during CVI reaction. The compressive strength increased with relative density, with maximum values of 5.5 ± 1.26 MPa for ultimate SiC foam (ρ = 400 kg/m3) prepared by hybrid PIP/CVI technique. The thermo-oxidative stability of the resultant foam was evaluated up to 1650°C under air and shows excellent thermal stability compared to SiC foam prepared by PIP route. The densified SiC foam can find potential applications in the field of hot gas filters, catalyst supports, microwave absorption properties, and heat insulation for high-temperature applications.  相似文献   

10.
In this study, CNTs/SiC micro-pillars at controlled content ratios were introduced into C/SiC composites as heat transfer channels to improve the thermal conductivity in the thickness direction. The thermal conductivities and bending strengths before and after heat treatment at 1650 °C were investigated and the results were discussed. The theoretical calculations and finite element analyses confirmed that CNTs/SiC micro-pillars successfully worked as heat transfer channels. The theoretical thermal conductivity calculated by effective medium theory (EMT) model was 19.25 W/m⋅k and agreed-well with the experimental value. The measured thermal conductivity was estimated to 20.69 W/m⋅k and improved to 22.36 W/m⋅k after heat treatment. The latter was 3.56-fold higher than that of traditional C/SiC and attributed to increased grain growth during heat treatment. The optimal bending strength before heat treatment was recorded as 324.5 ± 23.74 MPa due to microstructure evolution caused by CNTs. After heat treatment, the bending strength improved by 138 % with ductile fracture mode attributed to ordered layer structure of PyC interphase and complex phase composition of the composites. These features benefited the abundant propagation of cracks and energy consumption. In sum, introduction of heat transfer channels into C/SiC composites provided a new way to improve the thermal conductivity in thickness direction of ceramic matrix composites.  相似文献   

11.
FeSi2 modified C/C-SiC composites (C/C-SiC-FeSi2) are fabricated by chemical vapor infiltration (CVI) combined with reactive melt infiltration (RMI) with FeSi75 alloy. The effects of high-temperature annealing (1600?°C, 1650?°C, 1700?°C) on the microstructure and performance of C/C-SiC-FeSi2 are investigated. With the elevation of annealing temperature, the porosity of the composites and the content of SiC increase due to the evaporation of liquid Si and the further reaction of Si and C. The mechanical performance gradually decreases due to the catalytic graphitization of the carbon fiber, the high porosity and the thermal residual stress (TRS) caused by thermal mismatch of different phases. The coefficient of thermal expansion and thermal diffusivity slightly decrease with increasing annealing temperature for the increase of porosity. However, the friction performance of the heat treated materials at high braking speed are greatly improved attributing to the increase of SiC content and the capturing and storage function of pores on hard particles.  相似文献   

12.
Carbon/carbon (C/C) composites have a wide application as the thermal structure materials because of their excellent properties at high temperatures. However, C/C composites are easily oxidized in oxygen-containing environment, which limits their potential applications to a great degree. Silicon carbide (SiC) ceramic coating fabricated via pack cementation (PC) was considered as an effective way to protect C/C composites against oxidation. But the mechanical properties of C/C composites were severely damaged due to chemical reaction between the molten silicon and C/C substrate during the preparation of SiC coating by PC. In order to eliminate the siliconization erosion, a pyrolytic carbon (PyC) coating was pre-prepared on C/C composites by the chemical vapor infiltration (CVI) prior to the fabrication of SiC coating. Due to the retardation effect of PyC coating on siliconization erosion, the flexural strength retention of the SiC coated C/C composites with PyC coating increased from 46.27 % to 107.95 % compared with the specimen without PyC coating. Furthermore, the presence of homogeneous and defect-free PyC coating was beneficial to fabricate a compact SiC coating without silicon phase by sufficiently reacting with molten silicon during PC. Therefore, the SiC coated C/C composites with PyC coating had better oxidation resistances under dynamic (between room temperature and 1773 K) and static conditions in air at different temperatures (1773?1973 K).  相似文献   

13.
Three kinds of carbon fiber reinforced multilayered (PyC–SiC)n matrix (C/(PyC–SiC)n) composites (n = 1, 2 and 4) were prepared by means of layer-by-layer deposition of PyC and SiC via chemical vapor infiltration. Thermal expansion behaviors in the temperature range of 800–2500 °C and thermal conductivity from room temperature to 1900 °C of C/(PyC–SiC)n composites with various microstructures were investigated. The results show that with increasing PyC–SiC sequences number (n), the coefficients of thermal expansion of the composites decrease due to the increase of interfacial delamination, providing room for thermal expansion. The thermal diffusivity and thermal conductivity also decrease with the increase of sequences number, which are attributed to the enhancement of phonon-interface scattering resulted from the increasing number of interfaces. Modified parallel and series models considering the interfacial thermal resistance are proposed to elaborate thermal conductivity of the composites, which is in accordance with the experimental results.  相似文献   

14.
Three‐dimensional (3D) needled composites, C/C, C/C‐SiC, and C/SiC, were prepared and their infrared emissivity properties in 1000–1600°C were investigated. Results showed that the infrared emissivity of all composites increased almost linearly with temperatures. In comparison with C/C, C/C‐SiC composites reduced by 10% in the total emissivity. Twenty‐two vol% SiC in C/C‐SiC composites caused a low zone in 10–14 μm, corresponding to the theoretical emissivity of SiC. For C/SiC composites prepared by CVI, 68 vol% SiC caused a “V” shape in the spectral emissivity. The high SiC content also endued the high infrared emissivity properties for C/SiC composites.  相似文献   

15.
Creep properties of 2D woven CVI and PIP SiC/SiC composites with Sylramic™-iBN SiC fibers were measured at temperatures to 1650 °C in air and the data was compared with the literature. Batch-to-batch variations in the tensile and creep properties, and thermal treatment effects on creep, creep parameters, damage mechanisms, and failure modes for these composites were studied. Under the test conditions, the CVI SiC/SiC composites exhibited both matrix and fiber-dominated creep depending on stress, whereas the PIP SiC/SiC composites displayed only fiber-dominated creep. Creep durability in both composite systems is controlled by the most creep resistant phase as well as oxidation of the fibers via cracking matrix. Specimen-to- specimen variations in porosity and stress raisers caused significant differences in creep behavior and durability. The Larson-Miller parameter and Monkman-Grant relationship were used wherever applicable for analyzing and predicting creep durability.  相似文献   

16.
Csf/SiC multilayer composites for thermal conductivity (TC) test in three directions were successively prepared by tape casting and pressureless sintering. After 1500°C/5 h oxidation treatment, short carbon fibers were oxidized which produced many pores. However, a core area, which was composed by short carbon fiber, SiC, and few SiO2, was still observed. TC properties of Csf/SiC multilayer composites were highly anisotropic. The TC was decreased with the increase in fiber amount. Csf/SiC multilayer composites demonstrated the highest TC along the tape casting direction and the lowest TC through the thickness direction, which is favorable for thermal protection purpose.  相似文献   

17.
In this article, the preparation of silicon carbide (SiC), carbon fiber (CF), and ethylene–propylene–diene monomer composite with different parts per hundred of SiC (phr) ratio (CF/SiC; 10/0, 0/10, 10/10, 10/15, 10/20) and its effect on mechanical and thermal properties have been studied. After the incorporation of SiC up to 20 phr with a stable CF (10 phr), composites demonstrated higher tensile properties up to 12.09 MPa, elongation at break (725%), modulus (3.5 MPa), and hardness (79 Shore-A) at composition (CF10SiC20 phr). Furthermore, the density of the composites has been achieved to a maximum value of 1.081 g/cm3 at composition (CF10SiC20 phr). The synthesized composite's functional group has been analyzed using Fourier-transform infrared spectroscopy. The thermal stability of the composites increased with the inclusion of SiC up to 20 wt% while achieving the 520°C described by thermogravimetric analysis. After gamma irradiation analysis, the mechanical properties of the composites were slightly enhanced. Thermal conductivity of the composites has been maintained up to 0.21 W/mK at CF10SiC20 phr of the composites. The morphology of silicon carbide and carbon fiber was examined using scanning electron microscopy.  相似文献   

18.
The thermal shock behavior of a three-dimensional carbon fiber reinforced SiC matrix fabricated by chemical vapor infiltration (CVI) technique was studied using the air quenched method. Damage to composites was assessed by a destructive technique of measuring mechanical properties using three-point flexure and SEM characterization. C/SiC composites displayed good resistance to thermal shock, and retained 83% of the original strength after quenching from 1300 to 300°C 100 times. The critical ΔT of C/SiC in combustion environment was 700°C. The critical number of thermal shocks for the C/SiC composite was about 50 times. When the number of thermal shocks was less than 50 times, the residual flexural strength of C/SiC composites decreased with the increase of thermal shock times. When the number of thermal shocks of C/SiC was greater than 50, the strength of C/SiC did not further decrease because the crack density was saturated.  相似文献   

19.
Heat dissipation remains a critical challenge in optical and electronic devices and diamond/SiC composite is the premiere material solution because of its outstanding thermal and mechanical properties. Si liquid infiltration is one of the most promising techniques to fabricate fully dense diamond/SiC composites with desired phase structures and exceptional properties. In this study, the thermal conductivity from room temperature to 1000 °C was investigated for the diamond/SiC composites fabricated by a liquid Si infiltration method. The experimental thermal measurement shows a good agreement with the computational solution obtained by solving the Boltzmann transport equation. The results suggest a strong correlation between the composite thermal conductivity and diamond volume percentage. A level-off of the thermal conductivity at high diamond content reflects increased thermal resistance. In addition, the annealing effect on the composite thermal conductivity as well as the thermal stability were evaluated.  相似文献   

20.
In order to improve the anti-oxidation performance of C/SiC composites at high temperature, C/SiC composites should be modified by self-healing components. SiBCN ceramic is an ideal self-healing component because of excellent oxidation resistance and thermal stability. C/SiC composites were modified by PDC SiBCN ceramic (C/SiC-SiBCN) by using CVI combined with polymer infiltration and on-line pyrolysis (PI-OP). The oxidation behaviors of C/SiC composites fabricated by CVI method and C/SiC-SiBCN composites fabricated by CVI + PI-OP method and CVI + PIP method at different temperatures in air were compared. The results showed that the strength retention ratios of the composites fabricated by the three methods decreased with the increase of temperature. Compared with the samples fabricated by the other two methods, the weight loss of the samples fabricated by CVI + PI-OP method was greater, but the strength retention ratio was higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号