首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
水滑石类材料在重金属废水治理中的应用进展   总被引:1,自引:0,他引:1  
总结了水滑石类材料对重金属离子吸附机理主要为离子交换作用、记忆效应、螯合作用和表面吸附;重点介绍了国外关于未焙烧水滑石、焙烧态水滑石以及插层水滑石在重金属废水治理中的最新研究应用进展;指出利用构成水滑石层板及插入层间的离子种类和数量的可调控性,可制备一系列具有特殊性能的水滑石类材料,将极大拓宽水滑石材料在吸附领域的应用范围;同时水滑石类材料合成简单、易于分离、成本低廉及可重复利用,显示了其在重金属废水处理中的良好应用前景.  相似文献   

2.
高娃  冉祥堃  赵汗青  赵宇飞 《化工学报》2021,72(6):2934-2956
我国盐湖镁资源丰富,合理利用镁资源制备高性能、高附加值的功能性材料,是镁资源可持续性开发与利用的重要导向标。镁基水滑石是指层板结构包含镁的二元、三元或多元水滑石,具有层板金属元素呈原子级分散、层板组成比例可调、插层阴离子可交换、结构拓扑转变以及记忆效应等结构特点,其在现代石油化工、煤化工、精细化工以及环境净化等领域具有广阔的应用前景。本文重点综述近几年基于镁基水滑石催化材料的研究进展,并总结其结构调控规律,为后续镁基水滑石催化材料的应用提供借鉴。  相似文献   

3.
夏亚穆  尤佳  王伟 《工业催化》2009,17(4):10-14
层状材料是一类具有规则层状结构的化合物,由于其层板上骨架阳离子的可替代性和层间离子的可交换性使其在催化领域用途广泛,其层板结构为开发具有高表面积、可调节孔径和体积的新型纳米材料提供了可能。介绍了近年来层状材料(层状钙钛矿、柱撑黏土和水滑石)在酸碱催化、光催化、环保以及生物精制等方面的应用及其研究进展  相似文献   

4.
阐述了水滑石纳米材料结构和性能之间的关系及近年来水滑石纳米材料在电化学生物传感器方面应用的最新进展。重点介绍了水滑石纳米材料在吸附生物酶制备电化学传感器、水滑石纳米片固定生物酶制备电化学传感器、水滑石纳米片固定其它活性组分制备电化学传感器、水滑石自构筑电化学传感器等方面的应用。着重对水滑石纳米材料制备电化学传感器的机理和制备方法进行了系统概述。提出了水滑石纳米材料构筑电化学生物传感器应用研究的发展趋势:对水滑石纳米材料进行多层、多组分、微型化和阵列化等多样化设计,指出高选择性和高灵敏度检测是未来新型电化学生物传感器应用研究的主要发展方向。  相似文献   

5.
水滑石类化合物是一类具有双羟基层状结构的阴离子纳米材料,其中Zn-Al系水滑石由于其独特的结构和性能,在多相催化领域、吸附剂、生物医药以及高分子功能材料等方面具有广泛的应用前景。本文简要论述了近年来,Zn-Al系层状类水滑石的制备方法,介绍了水滑石及衍生的Zn-Al复合氧化物在多相催化领域、功能材料中的应用,并讨论了水滑石稳定性与组成的关系。  相似文献   

6.
陈立谦  韩冰  刘琦 《无机盐工业》2011,43(12):38-41
采用共沉淀法合成镁铝及镁锌铝水滑石,并通过X射线衍射(XRD)、红外光谱(FT-IR)、扫描电镜(SEM)、热分析(TG/DTG)、粒度分析等手段对合成的水滑石进行表征,研究不同镁、铝、锌的投料比例对合成的水滑石结构及热性能等的影响。XRD表征结果表明,合成产物均具有水滑石特征峰。合成的镁铝水滑石随着镁铝比的增加其层板间距增大,层板上原子密度降低;合成的镁锌铝水滑石随着锌含量的提高层板间距减小,层板上原子密度降低。镁铝水滑石热分解过程有两个明显阶段,层间结晶水先脱除,随后是层间阴离子脱除及层板上部分羟基脱水;镁锌铝水滑石热分解过程只有一个明显的阶段,层板间阴离子在层板间结晶水脱除的同时也在脱除。  相似文献   

7.
水滑石是一种层状双羟基复合金属氧化物,水滑石这种特殊的结构使得其有着很好的性能,其热稳定性很高,同时吸附性也较强,能够很好地被运用到化工的各领域当中,对于改善材料性能有着很好的影响。因此研究了填充水滑石对于聚氯乙烯性能的改善,首先对水滑石进行了简单的介绍,然后介绍了水滑石在聚氯乙烯材料中的研究进展,最后进行了水滑石填充的发展前景展望。  相似文献   

8.
由于人类活动和自然原因,重金属污染已经成为一个全球性问题。吸附法是一种极具可操作性和规模化推广的修复技术,因此,开发具有高选择性、高吸附量的吸附剂迫在眉睫。类水滑石是一类典型的阴离子插层材料,因其层板组成可调、层间阴离子可交换、结构记忆效应等特点已经在重金属污染治理领域得到了广泛关注。概述了盐湖镁资源高值化转化制备镁基水滑石材料并用于重金属污染治理方面的工作,介绍了镁基水滑石在重金属污染耕地原位修复方面的应用进展,讨论了超稳矿化过程中存在的问题并提出了建议,最后对镁基水滑石的应用前景进行了展望。  相似文献   

9.
二氟尼柳嵌入镁铝水滑石的合成表征与研究   总被引:1,自引:0,他引:1  
采用共沉淀法、离子交换法和焙烧复原法三种不同方法将二氟尼柳嵌入Mg-Al水滑石层间,得到一种有机-无机复合层状材料.通过XRD、IR、TG-DTA和元素分析等手段对材料表征,结果表明,共沉淀法和离子交换法成功地将二氟尼柳嵌入水滑石,得到的材料层状结构完整、晶相单一,且层间距扩大为1.81~2.14 nm;IR分析表明二氟尼柳嵌入水滑石后,原二氟尼柳分子中的νC=O振动峰消失,在1567 cm(1和1412 cm(1处出现羧酸盐的-COO(对称与不对称吸收谱带;二氟尼柳嵌入水滑石后其分解温度提高了140~180℃.此外,根据表征结果建立了材料超分子结构模型, 即客体二氟尼柳与水滑石层板之间以静电力和氢键相互作用,以双层交替式倾斜地排列于层板之间.  相似文献   

10.
金属有机框架(MOFs)材料因其大的比表面积、可调控的孔道结构和丰富的活性位点引起了国内外学者们的广泛关注。近年来MOFs基材料广泛应用于能量储存与转化领域,但大多数MOFs基材料的低稳定性和低导电性等缺陷限制了其实际应用。通过对MOFs基材料进行改性,如采用共轭度高的有机配体以增加MOFs材料的稳定性,或MOFs衍生物以提高其氧化还原活性位点和导电性,从而达到提高MOFs基电极材料的电化学性能。主要介绍了原始MOFs及其衍生材料如碳材料、金属氧化物、金属硫化物、金属氢氧化物和金属磷化物等在超级电容器电极材料中的最新研究进展。研究表明,多金属MOFs材料或多金属MOFs衍生物有利于提高电极材料的电化学性能,而导电MOFs材料或MOFs衍生物中的碳材料有利于提高电极材料的导电性。最后对MOFs基电极材料在电化学储能领域中的研究做出了展望,指出MOFs基材料的形貌、组分和导电性是未来研究的发展方向。  相似文献   

11.
发展电化学能源存储与转换技术是我国的长期重大需求。作为电化学能源器件中的关键材料,多孔碳材料已成为当前能源材料与化工领域的研究热点。层次孔碳材料是一类新型的多孔碳材料,同时兼具不同尺寸与功能的微孔、中孔或大孔。研究者通过对层次孔碳材料可控设计,已制得一系列孔结构、孔骨架及表面化学性质和微/纳拓扑形貌各异的新型层次孔碳及其复合材料,极大地提升了其能源存储和转化性能。本综述总结了近年来有关层次孔碳材料的结构设计、可控制备及其在电化学能源器件应用领域等方面的研究进展,并对其未来发展提出了建议与展望。  相似文献   

12.
绿色能源的应用,促使着电化学储能与转换技术的飞速发展。锂离子电池作为储能领域最成功的二次离子电池之一,已被应用于各种电子产品中,但是由于锂资源短缺造成锂离子电池的成本增加,限制了其在大规模储能设备领域的应用。因此,寻找价格低廉、性能优异的二次离子电池是当下的研究热门之一。钠离子电池不仅拥有和锂离子电池相似的工作原理,而且还具有成本低、资源丰度大和可逆容量高的特点,有望成功地代替锂离子电池而应用于商业化生产。本工作主要综述了钠离子电池负极材料的性能研究进展,首先根据钠离子在负极材料存储方式不同,分析归纳了负极材料的插层反应、合金化反应和转换反应三种储钠机制,然后介绍了负极材料的结构修改、元素掺杂和材料复合三种改性方式,随后重点介绍了碳基材料、钛基材料、合金类材料、转换类材料和有机材料等几种关键的钠离子电池负极材料的电化学性能和所面临的问题,最后,以实际生产和工业应用为基础,展望了钠离子电池负极材料的研究方向。  相似文献   

13.
多孔炭材料具有导电性好、结构稳定、资源丰富、价格低廉的天然优势,既可直接作为电极材料,构建炭基电化学储能器件,又可与非炭电活性材料复合,起到传输电子、缓冲体积膨胀及调节界面反应的作用,在电化学储能器件中一直发挥着不可或缺的作用。结合本文作者课题组的研究工作,本文总结了多孔炭制备及孔结构和形貌的调控方法,分析了各方法的优缺点;并以超级电容器、锂离子/钠离子电池和锂硫电池为代表,阐述了多孔炭材料在电化学储能领域的作用及应用研究现状,讨论了电化学储能器件对多孔炭材料的结构与性能要求,指出了多孔炭在电化学储能应用中存在的局限性,并对多孔炭在这些储能领域的研究和发展趋势做出展望。  相似文献   

14.
During the past decade humans have witnessed dramatic expansion of fundamental research as well as the commercialization in the area of electrochemical energy storage, which is driven by the urgent demand by portable electronic devices, electric vehicles, transportation and storage of renewable energy for the power grid in the clean energy economy. Li-secondary batteries and electrochemical capacitors can efficiently convert stored chemical energy into electrical energy, and are currently the rapid-growing rechargeable devices. However, the characteristic (including energy density, cost, and safety issues, etc.) reported for these current rechargeable devices still cannot meet the requirements for electric vehicles and grid energy storage, which are mainly caused by the limited properties of the key materials (e.g. anode, cathode, electrolyte, separator, and binder) employed by these devices. Moreover, these key materials are normally far from renewable and sustainable. Therefore great challenges and opportunities remain to be realized are to search green and low-cost materials with high performances. A large number of the properties of biomass materials-such as renewable, low-cost, earth-abundant, specific structures, mechanical property and many others-are very attractive. These properties endow that biomass could replace some key materials in electrochemical energy storage systems. In this review, we focus on the fundamentals and applications of biomass-derived materials in electrochemical energy storage techniques. Specifically, we summarize the recent advances of the utilization of various biomasses as separators, binders and electrode materials. Finally, several perspectives related to the biomass-derived materials for electrochemical energy storages are proposed based on the reported progress and our own evaluation, aiming to provide some possible research directions in this field.  相似文献   

15.
金属有机骨架材料(MOFs)由于其高比表面积、可调孔结构以及多样的组成等引起了学者们的极大关注,尤其在电化学储能领域取得了较大的研究进展。本文综述了近几年MOFs基材料在锂硫电池、锂离子电池和超级电容器等电化学储能领域中的应用。详细介绍了MOFs及其复合材料作为锂硫电池正极载体时与活性物质的作用机理,探讨了MOFs对活性物质硫的物理封装和化学配位作用。此外,阐述了MOFs衍生碳材料因独特孔结构、较强导电性和丰富活性位点等作为电极材料时对电池性能的提升。最后对MOFs基材料在电化学储能中的研究前景作出了展望,指出MOFs基材料中杂原子比例的控制和孔道设计是未来研究的重点。  相似文献   

16.
催化脱氢反应广泛应用于化工生产和制氢工艺领域,因此,开发高效且适应苛刻反应条件的脱氢催化剂十分关键.水滑石材料(LDHs)由于具有特殊二维层状结构、金属阳离子的灵活可调性以及插层阴离子的易交换性等特点,可为催化脱氢的应用开展许多智能化设计策略.首先,介绍了LDHs的催化用途及其作用机制,主要介绍了LDHs及其插层材料作...  相似文献   

17.
Electrochemical water splitting is an efficient and clean strategy to produce sustainable energy productions (especially hydrogen) from earth-abundant water. Recently, layered double hydroxide (LDH)-based materials have gained increasing attentions as promising electrocatalysts for water splitting. Designing LDHs into hierarchical architectures (e.g., core-shell nanoarrays) is one of the most promising strategies to improve their electrocatalytic performances, owing to the abundant exposure of active sites. This review mainly focuses on recent progress on the synthesis of hierarchical LDH-based core-shell nanoarrays as high performance electrocatalysts for electrochemical water splitting. By classifying different nanostructured materials combined with LDHs, a number of LDH-based core-shell nanoarrays have been developed and their synthesis strategies, structural characters and electrochemical performances are rationally described. Moreover, further developments and challenges in developing promising electrocatalysts based on hierarchical nanostructured LDHs are covered from the viewpoint of fundamental research and practical applications.  相似文献   

18.
Continuous advancements in the field of energy conversion and storage, including the development, evaluation of abundant and inexpensive materials with good electrochemical performance, aim to meet the future energy demands. Transition metal phosphides (TMPs) have recently emerged as excellent energy conversion and storage materials due to their highly active surface sites, electrical conductivity, thermal and structural stability. TMPs exhibit numerous other desirable properties, like hardness and chemical stability, which result from the presence of strong M ? P bonds in the molecules. In this work, comprehensive review of recent advancements in research concerning TMPs and their applications in the area of energy conversion and storage was conducted. Additionally, the frequently employed synthetic strategies for the production of TMPs were investigated. Particularly, hydrogen and oxygen evolution reactions (HER and OER), dye-sensitized solar cells for energy conversion and storage, lithium-ion batteries, and supercapacitors were examined. TMPs display remarkable electrochemical behavior due to the synergistic effects of various compositions and surface structures. Moreover, the M-centers and P-sites possess high electrocatalytic activity. The P-sites of phosphides are negatively charged; thus, they attract protons, enhancing the HER/OER activities. Eventhough platinum-based electrocatalysts perform best in HER, their bifunctional properties have not been extensively studied due to poor OER activities. In energy storage, TMPs used as efficient and stable electrodes owing to their low charge-discharge potentials, high theoretical specific capacities, and a decreased ion-diffusion pathway. Finally, the challenges, future perspectives in the area of energy are discussed and several approaches for the improvement of multifunctional TMPs are proposed.  相似文献   

19.
煤是自然界中分布最广、储量最丰富的含碳资源,其分子结构与纳米碳材料具有天然的相似性,是优质的纳米碳材料前体。多年来,以煤为前体制备的各种纳米碳材料已被广泛应用于能源、信息、环境和生物医学等领域。其中,煤基零维纳米碳材料如纳米金刚石、富勒烯、碳纳米洋葱、碳点等,因其具有小的纳米尺寸、大的比表面积、独特的球形结构等,表现出优异的荧光特性、电化学性能以及催化性能等,在能源转化和存储等领域展现出极大的应用潜力。本文综述了基于煤炭及其衍生物为前驱体的各类零维纳米碳材料的制备方法和性能,并对其在照明显示、电化学储能、光/电催化等方面的应用进展进行总结,指出目前存在的问题与挑战及其解决策略,最后对其未来发展进行了展望。这为促进煤炭的高附加值转化和利用以及大规模制备煤基零维纳米碳材料提供理论和实践支持。  相似文献   

20.
Polymer-derived ceramics (PDCs) are being actively explored in various fields today because of their unique physiochemical properties. Very recent advances in the use of PDCs in energy storage technologies (e.g., batteries, supercapacitors) have motivated researchers to explore the possibilities of PDCs as electrocatalysts for use in energy conversion reactions. Impressively, the tunable functional properties, especially the electrical properties, of PDCs have helped to break through this “bottleneck” and enabled them to become promising materials for use in electrocatalytic conversion. This review presents an in-time summary of the progress in the development of PDCs for electrochemical energy conversion. First, a general introduction to the preparation of PDCs is provided. Later, the factors (e.g., chemical stability, electron conductivity) most closely related to electrocatalytic performance are discussed. Specifically, the parameters that affect the electron conductivity of PDCs are enumerated to delve into advanced strategies for achieving effective electrocatalysts. The relevant electrocatalytic conversion reactions (e.g., hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction) and utilization of PDCs in these reactions are also comprehensively introduced. Finally, the current challenges and future opportunities for PDC materials in the field of electrochemical energy conversion are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号