首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
综述了新型含能化合物2,6,-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)的合成及性能研究进展,论述了ANPyO的各种合成路线及其优劣,与结构类似的TATB相比较,ANPyO的能量和感度与之相当,且制备成本低,是一种极具应用潜力的新型钝感炸药。  相似文献   

2.
按照文献方法,制备了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)Ni(II)和Cu(II)两种含能配合物,用激光粒度测试仪及GJB772A-97法测试了粒度和感度,用密闭爆发器分别测试了含ANPyO Ni(II)和Cu(II)配合物发射药的燃烧性能,用靶线法测试了含两种配合物双基推进剂的燃烧催化性能。研究了两种配合物在双基发射药、三基发射药和双基推进剂中的燃烧作用。结果表明,ANPyO Ni(II)和Cu(II)两种配合物粒度都为微米级,爆速大于8 200m/s,爆压大于32GPa,优于TATB、HNS和PYX;两种含能配合物能够提高双基发射药的燃速,使其压强指数分别降低7.61%和3.29%,对双基发射药的燃烧性能具有明显的促进效果;ANPyO Cu(II)配合物使双基推进剂在10~20MPa下燃速提高20%,压强指数降低17.78%~55.84%,对双基推进剂的燃烧性能具有良好的催化效果。  相似文献   

3.
采用TG方法研究了2,4,6-三氨基-3,5-二硝基吡啶-1-氧化物(TNPyO)及其造型粉在升温速率分别为5、10、15、20 K/min的热分解过程,用非线性等转化率积分法(NL-INT)和Ozawa法计算了TNPyO及其造型粉的热分解动力学参数和机理函数.结果表明,TNPyO及其造型粉在231℃以下均具有良好的热安定性,热分解机理均属于n=1的随机成核和随后生长;TNPyO热分解的活化能、指前因子和机理函数分别为344.01 kJ/mol、3.796×1031和f(α)=(1-α),热分解动力学方程为:dα/dt=3.796×1031×(1-α)exp(-3.4401×104/T).  相似文献   

4.
为解决2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)难以用常规方法精制的难题,以铜盐、二甲基亚砜、硫酸和水为原料,通过ANPyO铜配合物的合成及解络合过程除去杂质2,6-二氨基-3,5-二硝基吡啶(ANPy),得到精制的ANPyO,通过对固、液废弃物的再利用,获得了精制ANPyO的新方法。用红外、核磁、元素分析、扫描电镜、差示扫描量热等对中间体及产物进行了表征。结果表明,通过该方法精制ANPyO的收率大于89%,纯度大于99%,有机溶剂需求量少。  相似文献   

5.
在升温速率分别为2.5、5、10、20 K/min条件下对2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)及其黏结炸药进行了TG实验,根据实验结果讨论了ANPyO及其两种橡胶黏结炸药的热分解过程,用非线性等转化率积分法和Ozawa法计算了ANPyO及其两种黏结炸药的热分解动力学参数和机理函数.结果表明,ANPyO及其黏结炸药在210℃以下均未出现明显的质量损失过程.ANPyO及其黏结炸药的热分解机理均属于n=1的随机成核和随后生长.ANPyO热分解的活化能、指前因子和机理函数分别为198.22 kJ/mol,2.743×1017 s-1,f(a)=(1-α),热分解动力学方程为:(dα)/(dt)=kf(α)=A·e(-E)/(RT)·f(α)=2.743×1017×(1-α)exp-(2.384×104)/(T).  相似文献   

6.
采用溶液-水悬浮-蒸馏法,分别以丁腈橡胶(NBR-26)、氟橡胶2311和2603为黏结剂,2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)和RDX为主体炸药制备了3种高聚物黏结炸药(PBX)。用激光粒径分析、扫描电镜、差示扫描量热法、热重分析法、机械感度等对3种PBX的结构和性能进行了表征。结果表明,PBX的平均粒径比较接近,约为50μm,比表面积在0.5m2/g左右;熔融吸热峰位于206.5℃附近,分解放热峰在231~235℃之间;撞击感度和摩擦感度分别为44%和32%。3种PBX的热稳定性低于ANPyO,机械感度低于RDX。  相似文献   

7.
用氨水作胺化剂、KMnO_4作氧化剂,研究了不同反应条件下2-氨基-3,5-二硝基吡啶-1-氧化物的氧化胺化反应,讨论了氧化胺化反应机理以及溶剂、氨水浓度等对胺化产物收率和组成的影响.结果表明,以DMSO为溶剂、反应过程中不断通入氨气,胺化反应的收率和选择性最佳,2,4,6-三氨基-3,5-二硝基吡啶-1-氧化物的收率可达到80%,副产物2,6-二氨基-3,5-二硝基吡啶-1-氧化物的收率降低至0.4%.采用~1 H NMR、IR和MS对目标化合物的结构进行了表征.  相似文献   

8.
主要从合成、物化性能方面简述了几类多氮含能材料:氨基/硝基杂环氮–氧化物、含能叠氮化合物、高氮化合物、钝感多氮高能炸药。结合国内外发展现状,指出了多氮含能材料技术未来发展的主要方向。  相似文献   

9.
2,6-二(2',4',6'-三硝基-3',5-二硝吡啶的合成   总被引:1,自引:0,他引:1  
由间硝基苯胺硝化制得2,3,4,6-四硝基苯胺(1),由化合物1用盐酸氯化制得2,4,6-三硝基-3-氨基氯苯(2),由化合物2与2,6,-二氨基吡啶缩合制得2,6-二(2,4,6-三硝基-3-氨基苯胺基)吡啶(3),最后由化合物3硝化制得标题化合物4.  相似文献   

10.
2,6-二氨基-3,5-二硝基吡嗪-1-氧化物合成及爆炸性质研究   总被引:2,自引:0,他引:2  
研究了三种合成2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)的新方法。此三种方法均以N-亚硝基二(氰甲基)胺为起始原料,经过环合制备2,6-二氨基吡嗪,再分别经硝化、氮氧化;氮氧化、硝化;乙酰化、氮氧化、硝化三种方法得到LLM-105,通过对硝化反应、氮氧化反应条件以及目标产物总收率和纯度分析,发现2,6-二氨基吡嗪经乙酰化、氮氧化、硝化反应合成路线最佳,LLM-105的收率可达45.8%,纯度大于99%。测试了LLM-105的爆速、爆压、DSC及落锤感度,同1,3,5-三氨基-2,4,6-三硝基苯(TATB)进行了对比,发现其性能优于TATB。用1H-NMR、IR、MS对LLM-105及其中间体结构进行了表征。  相似文献   

11.
为研究含能催化剂对微烟推进剂燃烧性能的影响,制备了多种含复合含能催化剂的RDX-CMDB推进剂,利用靶线法测定了推进剂在不同压力下的燃速,并对测试结果进行了线性回归.结果表明,在研究的含能催化剂中,2HDNPPb/2HDNPCu和4HDNPPb/2HDNPCu复合催化剂对推进剂有更好的催化效率和降低压力指数的能力.将含能复合催化剂与单一含能催化剂的催化作用进行比较得出,当催化剂加入量一定时,羟基吡啶铅盐、铜盐复合使用比单一的铅盐或铜盐有更好的催化效果.  相似文献   

12.
无氯TATB的合成进展   总被引:1,自引:1,他引:1  
根据国内外文献,综述了钝感炸药TATB的合成方法,介绍了几种含氯TATB改进的合成方法,着重讨论采用不同原料和路线合成无氯TATB的进展,特别介绍了利用氢的VNS直接胺化法合成TATB的原理和有关工艺路线,包括反应原材料、物料配比、胺化剂及其加入方式、淬灭反应的方法对产物得率、粒度、纯度和表观形貌的影响。VNS法是合成多硝基多氨基硝基芳烃类含能材料的一种新方法。  相似文献   

13.
Two kinds of reduced sensitivity high explosive 1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocane (RS‐HMX) with different particle sizes were selected to enhance the energy output and the mechanical properties of insensitive high explosive 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB). Mechanical sensitivities, dynamic mechanical analysis, and non‐linear time dependent creep behaviors of TATB/HMX composites were investigated and discussed in relation to the structural characteristics. Compared with TATB/conventional HMX (C‐HMX) sample, both the impact and friction sensitivities of TATB/RS‐HMX were reduced. It revealed that TATB/fine grains RS‐HMX composites had the highest storage modulus and minimum steady‐state creep strain rate due to the increased coherence strength and the inhibited slide of the single layer of TATB crystal. The creep resistance also showed clear dependence on the particle size of RS‐HMX. The overall results indicated that RS‐HMX had good potential in high energetic, safe, and load‐bearing material applications.  相似文献   

14.
The rationale behind developing insensitive energetic compounds (IECs) for incorporation into insensitive munition (IM) formulations (rather than the alternative approach of desensitizing higher energy but sensitive compounds) is discussed. With the aim of selecting a maximum of 2–3 IECs suitable for use in insensitive explosive and propellant compositions, a survey of the literature on IECs published in the last 20 years was carried out. From around 50 candidates, a selection was made of eight prime candidates, all heterocyclic compounds (principally monocyclic or fused‐ring bicyclic compounds of the di‐ or triazine, triazole or oxadiazole classes), which displayed explosive performance significantly better than that of the ubiquitous IEC, TATB. The criteria for inclusion of compounds in these listings are described. Screening of the eight candidate compounds against further performance criteria reduced the list to five compounds which were evaluated in detail – these were: CL‐14 (5,7‐diamino‐4,6‐dinitrobenzofuroxan), ANPZ‐i (2,5‐diamino‐3,6‐dinitropyrazine), NNHT (2‐nitrimino‐5‐nitro‐hexahydro‐1,3,5‐triazine), NTAPDO (5‐nitro‐2,4,6‐triaminopyrimidine‐1,3‐dioxide), and PANT [4‐(picrylamino)‐5‐nitro‐1,2,3‐triazole]. A detailed analysis of scale‐up issues associated with each compound was then made, including cost and availability of precursors, hazards (chemical and explosive), effluent streams, and other scale‐up issues (e.g. materials of plant construction). A further downselection using these criteria gave the present short‐list comprising three compounds (the first three listed above) and further evaluation is in progress. The results of this study, funded by UK MOD, comprise the UK contribution to a nine‐nation European research collaboration in the EUCLID Common European Priority Area 14 “Energetic Materials”, as part of a five‐year project which commenced in October 2003.  相似文献   

15.
GUDN的合成与应用进展   总被引:1,自引:0,他引:1  
概述了新型钝感高能材料N-脒基脲二硝酰铵盐(GUDN)的合成方法,并介绍了其相关应用。GUDN具有制备成本低、钝感、热稳定性好、不吸湿、相容性好等诸多优点,适用于推进剂、气体发生剂和钝感炸药。  相似文献   

16.
The insensitive high explosive 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) was selected for coating and desensitization of hexanitrohexaazaisowurtzitane (CL‐20), another high explosive, after surface modification. About 2 wt‐% polymer binder was adopted in the preparation process to further maintain the coating strength and fill the voids among energetic particles. The structure, sensitivity, polymorph properties, and thermal behavior of CL‐20/TATB by coating and physical mixing were studied. Scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS) results indicate that submicrometer‐sized TATB was compactly coated onto the CL‐20 surface with coverage close to 100 %. The core‐shell structure of CL‐20/TATB was confirmed by observation of hollow TATB shell from the CL‐20 core dissolved sample. X‐ray diffraction (XRD) analysis revealed that the polymorph of CL‐20 maintained ε form during the whole preparing process. Thermal properties were studied by thermogravimetry (TG) and differential scanning calorimeter (DSC), showing effects of TATB coating on the polymorph thermal stability and exothermic decomposition of CL‐20. Both the impact and friction sensitivities were markedly reduced due to the cushioning and lubricating effects of TATB shell. The preparation of explosive composites with core‐shell structure provides an efficient route for the desensitization of high explosives, such as CL‐20 in this study.  相似文献   

17.
BDNPF/A增塑剂的性能及其应用   总被引:1,自引:0,他引:1  
BDNPF/A具有适宜的密度和黏度,与众多的推进剂和炸药组分相容性良好。BDNPF/A毒性与一般硝基化合物类似;安定性好,在配方中替代NG,可降低配方的冲击敏感性;能量适中,具有出色的氧平衡和热平衡数值,在配方中替代惰性增塑剂,可显著改善配方的燃速和比冲。BDNPF/A在DB、CMDB等推进剂配方和PBX、PAX系列炸药配方中都得到了广泛应用,是制备钝感含能材料的必要含能增塑剂之一。  相似文献   

18.
BuNENA含能增塑剂的性能及应用   总被引:3,自引:0,他引:3  
BuNENA(N–丁基硝氧乙基硝胺)是一种性能优良的新型含能增塑剂,在枪炮发射药和火箭推进剂应用中均受到研究者的广泛关注,并被进行系统研究。在发射药中,BuNENA具有塑化能力强、工艺性能好、感度低、能量高等优点,能进一步提高配方力学性能,其应用前景广阔。而在HTPE(端羟基聚环氧乙烷–四氢呋喃嵌段共聚醚)火箭推进剂中,BuNENA已被证明是一种对提高能量、降低感度和提高推进剂力学性能等具有明显作用的新型含能增塑剂,使用HTPE/BuNENA黏合剂体系的钝感固体推进剂的综合性能优于HTPB/AP(端羟基聚丁二烯/高氯酸铵)推进剂,并可满足钝感弹药(IM)要求,已在各种战术发动机中获得了实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号