首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
用流变仪考察了分子结构对阴离子双子表面活性剂溶液黏度的影响,并用SEM观察了其溶液微观结构变化,探讨了其对溶液黏度影响的机理。结果表明:间隔基团碳数(s)=2,疏水链碳数(m)=12或14时,亲水头基类型对其双子表面活性剂溶液黏度影响呈现相同规律,即羧酸盐磺酸盐硫酸酯盐;当s=2时,疏水链碳数增加,羧酸盐双子表面活性剂溶液黏度增大,磺酸盐双子表面活性剂溶液黏度呈波动上升;疏水链碳数相同,间隔基团碳数增加,磺酸盐双子表面活性剂溶液黏度先增大后减小,羧酸盐双子表面活性剂溶液黏度减小,其中,DS18-3-18和DC16-2-16增黏效果好;温度升高,DS18-3-18和DC16-2-16溶液黏度下降,但90℃时DS18-3-18溶液黏度大于DC16-2-16。微观结构表明:间隔基团碳数增大,DS18-s-18溶液胶束结构由球状变为片状直至球状,导致溶液黏度先增后降。温度升高,DS18-3-18溶液中片状胶束数目呈下降趋势,至90℃时,溶液中仍有联结完好的片状胶束存在,因此,DS18-3-18具有较好的耐温增黏性。  相似文献   

2.
为优选耐高温清洁压裂液增黏剂,用流变仪考察了分子结构、温度变化对阴离子双子表面活性剂溶液黏度的影响,并用扫描电镜研究了其溶液微观结构变化,探讨了其对溶液黏度的影响机理。结果表明,间隔基团碳数s=2,疏水链碳数m=12或14时,亲水头基类型对其双子表面活性剂溶液黏度影响呈现相同规律(羧酸盐>磺酸盐>硫酸酯盐);间隔基团碳数s=2时,疏水链碳数增加,羧酸盐双子表面活性剂溶液黏度增大,磺酸盐双子表面活性剂溶液黏度呈波动上升;疏水链碳数相同时,间隔基团碳数增加,磺酸盐双子表面活性剂溶液黏度先增大后减小,羧酸盐双子表面活性剂溶液则黏度减小,其中DS18-3-18和DC16-2-16增黏效果好;温度升高,DS18-3-18和DC16-2-16溶液黏度下降,但90℃时DS18-3-18溶液黏度(13.25mPa.s)大于DC16-2-16。微观结构研究表明,间隔基团碳数增大(s=2、3、4),DS18-s-18溶液胶束结构依次由球状变为片状直至球状,导致溶液黏度先增后降。温度升高,DS18-3-18溶液中片状胶束数目或堆积密度呈下降趋势,至90℃时,溶液中仍有联结完好的片状胶束存在,因此DS18-3-18具有较好的耐温增黏性。  相似文献   

3.
在合成系列羧酸盐双子表面活性剂的基础上,采用MR301界面流变仪考察了质量分数、分子结构(疏水链长度及联接基碳数)、温度、剪切速率、无机盐对羧酸盐双子表面活性剂溶液黏度的影响,并用扫描电镜(SEM)观察其胶束微观结构。黏度测试结果表明,疏水链碳数(10≤m≤16)越多,羧酸盐双子表面活性剂增稠能力越强,溶液黏度突变所需活性剂质量分数越小;疏水链碳数(m=16)相同,联结基碳数(s=2、3、4)增加,其增稠能力越强,耐温性越好;随着无机盐质量分数的增加,羧酸盐双子表面活性剂DC 16-2-16溶液黏度先升高后降低,离子强度越强的无机盐其最佳加量越小;微观结构检测的SEM图证实了增长疏水链长度可以促进羧酸盐双子表面活性剂溶液中的胶束从线形向网状转变。  相似文献   

4.
通过对磺酸盐型Gemini表面活性剂加入纳米SiO_2,探究纳米SiO_2对其黏度、耐温性和粘弹性的影响,并从微观结构进行探究。结果表明,质量分数4%的DS18-3-18溶液黏度随着温度升高而降低。在复配体系中,随着纳米SiO_2质量分数增加,溶液黏度先增加后降低,其中质量分数在0.02%增黏效果最好,体系黏度从2.61 mPa·s增加到16.72 mPa·s,提高6.4倍,同时加入纳米SiO_2可以提高溶液的粘弹性。微观结构表明,温度升高,溶液微观结构胶束之间排列越来越稀疏,加入纳米SiO_2溶液微观结构变得紧密。  相似文献   

5.
通过对磺酸盐型Gemini表面活性剂加入纳米SiO_2,探究纳米SiO_2对其黏度、耐温性和粘弹性的影响,并从微观结构进行探究。结果表明,质量分数4%的DS18-3-18溶液黏度随着温度升高而降低。在复配体系中,随着纳米SiO_2质量分数增加,溶液黏度先增加后降低,其中质量分数在0.02%增黏效果最好,体系黏度从2.61 mPa·s增加到16.72 mPa·s,提高6.4倍,同时加入纳米SiO_2可以提高溶液的粘弹性。微观结构表明,温度升高,溶液微观结构胶束之间排列越来越稀疏,加入纳米SiO_2溶液微观结构变得紧密。  相似文献   

6.
阳离子双子表面活性剂C18-4- C18•2Br的流变性   总被引:2,自引:0,他引:2  
陈洪 《精细化工》2011,28(11):1081-1085
对阳离子双子表面活性剂四亚甲基-1,2-双(十八烷基二甲基烷基溴化铵)(C18-4-C18.2Br)的流变特性进行了研究,考察了表面活性剂质量分数、水杨酸钠质量分数及温度对表面活性剂溶液黏度和黏弹性的影响。C18-4-C18.2Br溶液的黏度随着质量分数的增加而增加。随着水杨酸钠质量分数的增加,C18-4-C18.2Br溶液的黏度和黏弹性出现先增加后下降的过程。温度对C18-4-C18.2Br溶液的黏度有较大影响,水杨酸钠的加入可明显提高C18-4-C18.2Br溶液的抗温性。TEM结果表明,适量的水杨酸钠能够促进C18-4-C18.2Br胶束从球形向蠕虫状转变,过量的水杨酸钠又会使蠕虫状胶束向囊泡转变。  相似文献   

7.
以十二胺、1,6-二溴己烷和1,3-丙磺酸内酯等为原料,分别采用极性头基加入法和联结基加入法,合成了一种磺酸盐型双子表面活性剂1,6-双(N-十二烷基-N-丙基磺酸钠)-己烷(简称12-6-12(SO3)2 ),对其中间体和产物结构进行表征,并对其表面活性进行测定。1H NMR和ESI-MS的结构分析证实了它们的结构。性能测试表明:该表面活性剂水溶液在30oC条件下,临界胶束浓度(CMC)为0.015 mmol/L ,表面张力为33.50mN/m,表面过剩吸附量(Γmax)为2.78× 10-6 mol∙m-2,分子最小截面积(Amin)为0.58 nm2。该磺酸盐双子表面活性剂是结构相似的传统单链表面活性剂十二烷基磺酸钠(SDS)CMC(25oC,8.0 mmol/L)的0.002倍,是结构相似的磺酸盐双子表面活性剂1,3-双(N-十二烷基-N-丙基磺酸钠)-丙烷(12-3-12(SO3)2)CMC(25oC,0.048 mmol/L)的0.31倍。  相似文献   

8.
以十二胺、1,6-二溴己烷和1,3-丙磺酸内酯为主要原料,分别采用极性头基加入法和联结基加入法,合成了一种磺酸盐型双子表面活性剂1,6-双(N-十二烷基-N-丙基磺酸钠)-己烷〔简称12-6-12(SO_3)_2〕。用1HNMR和ESI-MS表征了中间体和产物的结构,并考察了12-6-12(SO_3)_2的表面活性。结果表明:该表面活性剂水溶液在30℃下,临界胶束浓度(CMC)为0.015 mmol/L、表面张力为33.50 m N/m、表面过剩吸附量(Γmax)为2.78×10-6mol/m2、分子最小截面积(Amin)为0.60 nm2。该磺酸盐双子表面活性剂的CMC是结构相似的传统单链表面活性剂十二烷基磺酸钠(SDS)CMC(25℃,8.0 mmol/L)的0.2%,是结构相似的磺酸盐双子表面活性剂1,3-双(N-十二烷基-N-丙基磺酸钠)-丙烷(12-3-12(SO_3)_2)CMC(25℃,0.048 mmol/L)的31%。  相似文献   

9.
以对苯二胺、棕榈酰氯、2-氯乙基磺酸钠为主要原料,经取代和酰化等反应合成了一种磺酸盐型双子表面活性剂——N,N'-双棕榈酰基对苯二胺二乙基磺酸钠(DS16-P-16),用FTIR、~1HNMR对中间体和目标产物进行了结构表征,并测定了其水溶性、表&界面活性、泡沫性能和乳化性能。结果表明:在25℃时,DS16-P-16的临界胶束浓度(CMC为5.01×10~(-4) mol/L)是传统表面活性剂十二烷基硫酸钠(SDS)的6.26%,pC20(水的表面张力降低20 mN/m时所需溶液浓度的负对数)为3.61,表现出更好的降低水表面张力的效率;随着温度和溶液浓度的增大,DS16-P-16溶液与吉林油田原油的界面张力逐渐降低,且均低于1×10~(-2) mN/m,在45℃下,质量分数为0.5%的该溶液可将油水界面张力降低至1.46×10~(-2) mN/m;在质量分数为0.1%时,DS16-P-16溶液的初始起泡高度为28 cm,稳泡率可达93%,乳状液稳定时间为437 s。相同条件下,质量分数为0.1%的十二烷基硫酸钠的初始起泡高度为15 cm,稳泡率为60%,乳化时间为128 s。  相似文献   

10.
以对苯二胺、棕榈酰氯、2-氯乙基磺酸钠为主要原料,经取代和酰化等反应合成了一种磺酸盐型双子表面活性剂——N,N'-双棕榈酰基对苯二胺二乙基磺酸钠(DS16-P-16),用FTIR、~1HNMR对中间体和目标产物进行了结构表征,并测定了其水溶性、表界面活性、泡沫性能和乳化性能。结果表明:在25℃时,DS16-P-16的临界胶束浓度(CMC为5.01×10~(-4) mol/L)是传统表面活性剂十二烷基硫酸钠(SDS)的6.26%,pC20(水的表面张力降低20 mN/m时所需溶液浓度的负对数)为3.61,表现出更好的降低水表面张力的效率;随着温度和溶液浓度的增大,DS16-P-16溶液与吉林油田原油的界面张力逐渐降低,且均低于1×10~(-2) mN/m,在45℃下,质量分数为0.5%的该溶液可将油水界面张力降低至1.46×10~(-2) mN/m;在质量分数为0.1%时,DS16-P-16溶液的初始起泡高度为28 cm,稳泡率可达93%,乳状液稳定时间为437 s。相同条件下,质量分数为0.1%的十二烷基硫酸钠的初始起泡高度为15 cm,稳泡率为60%,乳化时间为128 s。  相似文献   

11.
对以溴代十四烷、乙二胺和1,3-丙磺内酯为原料合成的磺酸盐型Gemini表面活性剂的表面活性进行了评价。主要研究了不同碳链长度的季铵盐、无机盐和有机盐的加入,剪切时间以及温度对上述表面活性剂体系黏度性质的影响。结果表明,磺酸盐型Gemini表面活性剂的临界胶束浓度比相应的单链表面活性剂低1~2个数量级;当向质量分数为1%的磺酸盐型Gemini表面活性剂中加入季铵盐时,复配体系的黏度先增加后减少,且季铵盐的碳链越长,增黏效果越明显,复配体系的黏度最大可达245.5 m Pa·s,碳链的增长有助于蠕虫状胶束的形成;在磺酸盐型Gemini表面活性剂和十六烷基三甲基溴化铵(CTAB)的复配体系中,随着KCl,Na Cl以及水杨酸钠质量分数的增加,复配体系的黏度先增加后减少,其中KCl的增黏效果最为显著,当KCl的质量分数为0.12%,复配体系的黏度达到最大,为430.2 m Pa·s;在磺酸盐型Gemini表面活性剂/CTAB/KCl的复配体系中,随着剪切时间和温度的增加复配体系的黏度逐渐降低。  相似文献   

12.
将短链二元酸(丁二酸(SA)、戊二酸(GA)、己二酸(AA))和长链N-(3-(二甲基氨基)丙基)硬脂酰胺(C18N3N)以1∶2的摩尔比混合,通过静电相互作用,构筑了三种新型的拟双子表面活性剂。该过程无需复杂的合成。通过表面张力仪和流变仪测试了该系列表面活性剂的表面活性和流变性能。结果发现,2C18N3N/GA拟双子表面活性剂的cmc为4.60×10-5 mol/L,该值远低于传统双子表面活性剂,说明构筑的拟双子表面活性剂2C18N3N/GA具有很强的胶束聚集能力,2C18N3N/SA和2C18N3N/AA体系也具有类似的特征。在浓度超过50 mmol/L时,该系列表面活性剂可形成蠕虫状胶束,溶液表现出黏弹行为,且黏弹溶液具有较好的耐温耐剪切性能。还考查了上述黏弹溶液的pH和温度响应性,发现体系pH为6.1时,溶液黏度很高,pH为4.0或9.3时,黏度下降。随着温度的升高,体系的黏度也会迅速增加。在60℃时,该体系的零剪切黏度可高达11 967.73 Pa·s。该表面活性剂制备简单,性能优良,拓展了新型表面活性剂的制备方法和应用范围。  相似文献   

13.
双子表面活性剂因其高界面活性、低临界胶束浓度、低浓度时增粘效果明显,在清洁压裂液增稠方面潜力巨大。而溶液胶束结构的形态及变化与溶液粘度密切相关,因此准确表征不同浓度下双子表面活性剂溶液胶束微观结构形态及变化特征具有重要理论指导意义。在大量调研表面活性剂溶液胶束结构形态检测方法与表征的基础上,重点阐述了可用于双子表面活性剂溶液胶束微观结构表征的研究方法及其研究发展现状。  相似文献   

14.
谢程程  庞明军  巢建伟 《化工进展》2019,38(5):2441-2450
深入研究表面活性剂的流变特性,对于理解湍流减阻机理和改进制药、化工等领域的产品质量具有重要意义。本文研究了相同升温速率、不同剪切速率以及相同剪切速率、不同升温速率对阳离子表面活性剂十六烷基三甲基氯化铵(CTAC)溶液表观黏度的影响。研究表明:当温度较低时,剪切速率对表面活性剂溶液表观黏度的影响起主导作用;随着温度的升高,高温对胶束的影响增强导致溶液在高温处出现剪切稀化现象。当浓度为0.3125mmol/L时,溶液临界温度随剪切速率的升高保持恒定;但当浓度升高至0.6250~1.2500mmol/L时,在高温和高剪切的作用下,黏度曲线出现“平台”和短暂的增稠现象。对于中等浓度表面活性剂溶液,浓度升高导致蠕虫状胶束出现分支并抑制了“平台”的产生;随着升温速率的增大,胶束结构的响应时间滞后于升温速率,但当γ=150s?1时,滞后效应减弱,高剪切对胶束结构的破坏占主导作用。  相似文献   

15.
采用丙烯酰胺(AM)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙烷磺酸(AMPS)和水溶性阴离子疏水单体S-18制备了新型耐盐疏水缔合聚合物S-18HPAM。聚合放热测试表明:疏水单体含量的增加导致放热时间的延长,更有利于疏水结构的形成。微观结构测试表明:聚合物具有复杂的网状结构,在NaCl溶液中网状结构更为明显。流变测试结果表明:聚合物在盐溶液中具有良好的耐温和抗剪切性能。聚合物质量分数为0.3%(基于溶液总质量),温度90℃,剪切速率170 s–1和NaCl质量浓度20000 mg/L条件下,剪切后表观黏度大于70 mPa·s。在总矿化度20000 mg/L模拟地下水条件下,S-18HPAM质量分数为0.3%,剪切后黏度为70 mPa·s,加入质量分数0.5%表面活性剂十二烷基硫酸钠(SDS)后,黏度增加到170m Pa·s。储能模量G'随着聚合物质量分数的增加而增大,体系弹性增强,同时疏水结构单元数量增加,形成致密的空间网络结构。  相似文献   

16.
以三聚氯氰和十二胺为主要原料,经过三步亲核取代、一步季胺化等反应步骤合成了十二胺基均三嗪类磺酸盐两性表面活性剂。通过单因素和正交试验确定了季胺化反应的最佳工艺条件:反应温度75℃,反应时间5 h,n(氯乙磺酸钠)∶n[1,2-N,N-(2-十二胺基-4-(N,N-二甲基-1,3-丙二胺)-1,3,5-均三嗪)乙二胺(TA)]=1.2。采用IR对目标产物进行了分子结构表征。结果表明:合成的最终产物的分子结构与所设计的分子结构相符。通过电导率法确定表面活性剂的临界胶束浓度为0.002 mol/L。通过析水时间法和显微成像法确定表面活性剂质量分数为0.1%时乳化能力和乳化稳定性最好。  相似文献   

17.
韩利娟  李丽娜  罗平亚  叶仲斌  樊力  陈洪 《精细化工》2012,29(4):322-325,346
以脂肪酸、二甘醇、氯磺酸为原料,经酯化、磺化反应制备了4种二甘醇双(α-磺酸钠)烷基羧酸酯表面活性剂。用红外光谱、元素分析对产物进行了表征,并对其表面活性和聚集行为进行了研究。结果表明,该类脂肪酸双酯双磺酸盐型双子表面活性剂比十二烷基硫酸钠的临界胶束浓度低1~2个数量级和更强的降低表面张力的能力。稳态荧光猝灭实验表明,表面活性剂胶束聚集数随着烷烃链碳原子数的增加而逐渐减小。  相似文献   

18.
磺酸盐阴离子表面活性剂具有原料来源广、合成成本低、粘弹性能好等优点,是油田广泛使用的表面活性剂。通过分析磺酸盐阴离子表面活性剂的影响因素,研究了无机盐、浓度、温度、助剂对于该表面活性剂的影响。利用实验分析了质量分数为4%磺酸盐阴离子表面活性剂DS10-2-10溶液在不同温度下的粘度、不同浓度下表面活性剂的粘度、加入1%和4%的NaCl时表面活性剂粘度的随着温度的变化和加入不同助剂,表面活性剂的粘度变化。通过研究不同因数对磺酸盐阴离子表面活性剂粘度的影响,为矿场中使用该表面活性剂提供实验指导。  相似文献   

19.
以乙二胺、月桂酸、三氯化磷和2-溴乙基磺酸钠等为原料,制备磺酸盐双子表面活性剂乙撑-双(N-乙磺酸-十二酰胺)钠盐,对其中间体合成工艺进行优化,对产物结构进行表征,并对其相关性能如表面活性、起泡性以及乳化性进行测定。结果表明:该表面活性剂的水溶液在24℃条件下,其临界胶束浓度(cmc)为0.53 mmol/L,相应表面张力(γcmc)为29.73 m N/m,该表面活性剂的表面活性、起泡性以及乳化性较好。  相似文献   

20.
秦安国 《精细化工》2012,29(2):122-125
在(30±0.2)℃下,用直接观察法、表面张力法和旋转液滴法考察了不同无机盐(NaCl、CaCl2和MgCl2)对磺酸盐型双子表面活性剂DJ溶液溶解性、临界胶束浓度(CMC)值和界面张力的影响。结果表明,磺酸盐型双子表面活性剂DJ具有良好的抗盐性,溶解度可以达到20 000 mg/L以上;在低盐度范围时(小于500 mg/L),随着无机盐质量浓度的增加,表面活性升高,CMC降低;随着阳离子(Na+、Ca2+和Mg2+)价数的增加,CMC降幅增大,且Ca2+的影响程度大于Mg2+;在无机盐质量浓度达到10 000 mg/L时,CMC呈上升趋势;无机盐的加入使溶液界面张力先降后升,然后趋于平稳。无机盐质量浓度在100~1 000 mg/L内,磺酸盐型双子表面活性剂DJ溶液的界面张力可以达到最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号