首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 890 毫秒
1.
有机高分子絮凝剂处理炼油废水的初步研究   总被引:1,自引:0,他引:1  
薛媛  李世强 《应用化工》2010,39(7):1069-1073
用有机高分子絮凝剂聚丙烯酰胺(PAM)与壳聚糖分别处理炼油废水,考察了pH、温度、絮凝剂投加量、沉降时间等因素对絮凝效果的影响。结果表明,壳聚糖的处理效果优于PAM;PAM处理炼油废水的最佳条件为:用量3 mg/L,pH为8,温度30℃,沉降时间40 min,此时石油类物质的去除率达97.96%,COD去除率达90.92%,NH3—N去除率达54.36%;壳聚糖处理炼油废水的最佳条件为:用量100 mg/L,pH为8,温度35℃,沉降时间40 min,此时石油类物质的去除率达98.33%,COD去除率达92.25%,NH3—N去除率达52.60%。  相似文献   

2.
壳聚糖絮凝有机废水机理的研究   总被引:6,自引:1,他引:6  
研究了壳聚糖絮凝处理高浓度含铜离子有机废水,合适pH值为5.5-6.5,壳聚糖的最佳用量与废水的化学需氧量及浊度有关,絮凝效果与搅拌时间无关,壳聚糖明显优于无机絮凝剂Al2(SO4),同时能螯合去除大量有毒重金属铜离子。壳聚糖絮凝有机废水的机理是壳聚糖所带正电与溶液悬浮质所带负电之间的静电引力。  相似文献   

3.
用壳聚糖和氯化铜合成了壳聚糖-铜(Ⅱ),并将其用于处理偶氮类废水的絮凝剂,考察了絮凝剂的用量,pH,搅拌时间,沉降时间等因素。确定了最佳反应条件为pH=8,快速搅拌3 min,慢速搅拌10 min,沉降30 min,絮凝剂用量为4 g/L。在此条件下壳聚糖-铜(Ⅱ)对此种废水的色度,浊度,COD的去除率在95%以上。  相似文献   

4.
以壳聚糖、3-氯-2-羟丙基三甲基氯化铵、氯乙酸为原料,制备了两性壳聚糖。以两性壳聚糖为吸附剂,处理磷化废水。通过单因素实验考察了pH、吸附剂用量、吸附时间和温度等因素对吸附效果的影响,对吸附机理进行了初探。结果表明,室温下最佳吸附工艺条件pH为2.0,ρ(吸附剂)为12.0g/L,吸附t为2.0h。此条件下,两性壳聚糖对磷化废水中锌离子和磷酸根的去除率分别达到78.9%和88.2%。  相似文献   

5.
粉末和乳液氢氧化镁处理含镍废水的比较   总被引:1,自引:0,他引:1  
分别采用粉末和乳液氩氧化镁处理含镍废水.考察搅拌时间、氢氧化镁用量、废水初话pH以及温度等条件对去除率的影响.同时测定了吸附等温线.并对二者的处理效果进行了比较.结果表明:氢氧化镁对含镍废水的处理效果很好,去除率可以达到98%以上:氢氧化镁具有很强的缓冲能力,废水的初始pH值和温度对去除率影响不大;处理过程是一个吸附过程,等温线符合郎格缪尔方程;对镍离子浓度为31.52mg/L、pH为2.4的废水.粉末和乳液氢氧化镁处理的搅拌时间分别为30min和15min.最佳用量分别为4g/L和2g/L.饱和吸附量分别为0.2379g/g和1.101g/g;乳液氢氧化镁比粉末的处理反应速度快、用量少、饱和吸附量大,处理效果更为理想. 了吸附等温线.并对二者的处理效果进行了比较.结果表明:氢氧化镁对含镍废水的处理效果很好,去除率可以达到98%以上:氢氧化镁具有很强的缓冲能力,废水的初始pH值和温度对去除率影响不大;处理过程是一个吸附过程,等温线符合郎格缪尔方程;对镍离子浓度为31.52mg/L、pH为2.4的废水.粉末和乳液氢氧化镁处理的搅拌时间分别为30min和15min.最佳用量分别为4g/L和2g/L.饱和吸附量分别 0.2379g/g和1.101g/g;乳液氢氧化镁比粉末的处理反应速度快、用量少、饱  相似文献   

6.
采用天然硅藻土处理低浓度氨氮废水,运用单因素试验法考察了硅藻土投加量、废水pH值和搅拌时间对氨氮去除率的影响,研究结果显示:在其对地表水氨氮(0.277 mg/L)的处理中,当硅藻土投加量为40 mg/L、pH值为7、搅拌时间为25 min时,处理效果最佳,氨氮去除率可达64.5%;在其对咸阳印染废水氨氮(13.4 mg/L)的处理中,当硅藻土投加量为800 mg/L、 pH值为8、搅拌时间为25 min时,处理效果最佳,氨氮去除率可达45.3%;在其对福建印染废水氨氮(26.76 mg/L)的处理中,当硅藻土投加量为2 500 mg/L、 pH值为7、搅拌时间为35 min时,处理效果最佳,氨氮去除率达到51.6%。硅藻土适用于低浓度氨氮废水的处理。  相似文献   

7.
刘培  陈晨 《电镀与涂饰》2013,32(5):45-48
以NaHSO3为还原剂,新型重金属离子捕集剂DTCR为螯合剂,采用螯合沉淀法处理含铬电镀废水。研究了还原剂投加量、还原反应阶段的废水pH、螯合剂投加量、絮凝剂(PAM)投加量、螯合沉淀阶段的废水pH和搅拌时间对处理效果的影响。还原反应的较优工艺为:NaHSO3200mg/L,废水pH1.84,搅拌时间30min。螯合沉淀的最佳工艺条件为:DTCR70mg/L,PAM8mg/L,废水pH8.0,搅拌时间40min。采用最佳螯合沉淀工艺处理含铬电镀废水时,总铬去除率在95%以上,出水总铬为0.14mg/L,且未检测到其他重金属离子,可达标排放。  相似文献   

8.
为了提高对造纸废水的处理效果,采用磁性Fe3O4/壳聚糖复合微球作为絮凝剂对其进行处理。将水解法制备的Fe3O4微粒分散于壳聚糖溶液中,制备成磁性Fe3O4/壳聚糖复合微球,考察了其投加量、pH、搅拌速度及沉降时间对造纸废水COD去除率的影响。结果表明,在pH为8,搅拌速度为120 r/min,复合微球投加量为6 mg/L,沉降时间为8 h的条件下,当进水COD为2 549.41 mg/L时,COD去除率可达到83.38%。  相似文献   

9.
壳聚糖吸附重金属离子的研究   总被引:8,自引:0,他引:8  
为了处理工业废水中重金属,在实验室条件下,对自制壳聚糖吸附重金属离子的规律进行了研究,提出了壳聚糖吸附模拟废水中的Cd^2+、Pb^2+、Cu^2+的最佳条件。结果表明,在脱乙酰度为90%,粘度为100 cP·s的壳聚糖吸附Cd^2+、Pb^2+、Cu^2+过程中,吸附效果与壳聚糖的用量、吸附时间、溶液pH值有关,这3种因素对壳聚糖吸附重金属的吸附率影响显著。提出实验室条件下自制壳聚糖对Cd^2+、Pb^2+、Cu^2+的最佳吸附条件,即壳聚糖吸附Cd^2+的最佳条件:用量为10 g/L,吸附时间1 m in,溶液pH=8;吸附Pb^2+用量为10g/L,吸附时间60 m in,溶液pH=6;吸附Cu^2+用量10 g/L,吸附时间1 m in,溶液pH=5,为含有Cd^2+、Pb^2+、Cu^2+重金属离子的工业废水的处理提供了小试基础,同时使得壳聚糖作为吸附剂新材料的应用有了进一步的发展。  相似文献   

10.
以乙醇胺为改性剂,硝酸钙和磷酸氢二铵为原料采用沉淀法制备纳米羟基磷灰石.考察了改性剂乙醇胺用量、搅拌时间、羟基磷灰石用量、pH等因素对Cu2+吸附的影响.实验结果表明,乙醇胺的加入有利于羟基磷灰石对Cu2+的吸附,最佳吸附条件为乙醇胺2.5%,羟基磷灰石6g/L,pH为3,搅拌时间40 min,Cu2+去除率为98.3%,处理后的含Cu2+废水符合国家废水排放标准.  相似文献   

11.
以硫辛酸厂含铝废水中的Al3+为原料,采用结晶法制备铵明矾,研究了时间、NH4+/Al3+摩尔比、SO42-/Al3+摩尔比、温度、搅拌速度对废水中铝去除率和铵明矾产量的影响,对所制铵明矾与商品铵明矾进行比较. 结果表明,两者具有几乎相同的晶体结构、形貌和化学组成,所得产品符合同类工业产品标准. 结晶法用硫辛酸厂含铝废水制备铵明矾的适宜条件为:反应时间8 h,NH4+/Al3+ 1.40,SO42-/Al3+ 2.90,温度5~15℃,搅拌速度35~55 r/min. 宏观反应动力学表明,在晶体生长期,Al3+在边界层扩散传质为反应控制步骤,液相主体Al3+浓度C随时间t的变化关系符合方程C=(C0-Ci)e-kt+Ci. 当搅拌速度较低时,铵明矾晶体平均粒径大,分布宽;搅拌速度增加,晶体平均粒径减小,粒径分布变窄.  相似文献   

12.
壳聚糖复合絮凝剂处理含油废水   总被引:1,自引:0,他引:1  
壳聚糖复合絮凝剂处理含油废水,正交实验结果分析表明:pH值为7,PAM量为2mg/L,壳聚糖量为2mg/L时,对废水化学耗氧量(COD)去除率可达47.33%;pH值为7.PAM量为1mg/L,壳聚糖量为8mg/L时,对废水浊度处理得到较为满意的效果,浊度去除率可达91.73%。对浊度和COD去除率的影响因素主次顺序是:pH值〉PAM投加量〉搅拌时间〉壳聚糖投加量。  相似文献   

13.
氯化铝混凝处理含锌镉废水的研究   总被引:1,自引:0,他引:1  
陈杰山  许欣  周玫瑰 《广州化工》2009,37(7):151-153
采用氯化铝对一种同时含Zn^2+、Cd^2+的废水进行了实验条件下的混凝处理,讨论了在搅拌速度及反应温度不变的情况下,AlCl3用量、溶液pH值、混凝时间对Zn^2+、Cd^2+除去效果的影响,找出了最佳处理条件。结果表明,用AlCl3处理该废水对Zn^2+有很好的除去效果,对Cd^2+有较好的除去效果;在室温下混凝处理该废水的最佳条件为:pH值为6或9,AlCl3用量为0.8g·L^-1,反应时间为30-40min。  相似文献   

14.
油脂加氢催化剂是以金属镍为活性组分、氧化铝为载体制备的Ni/Al2O3催化剂。在制备催化剂过程中,其合成条件直接影响着催化剂的最终活性。以工业硝酸镍、碳酸钠和自制氧化铝粉为原料,利用共沉淀的方法制备加氢催化剂,考察了反应温度、反应时间、反应液pH及反应过程中搅拌转速对催化剂活性的影响。通过实验数据汇总分析,最终确定制备Ni/Al2O3油脂加氢催化剂的最佳条件:反应温度为85 ℃、反应结束时溶液pH=8.0、反应时间为1.5 h、搅拌转速为600 r/min。在此条件下制备的Ni/Al2O3催化剂,经棕榈油加氢评价后测定的碘值最低。  相似文献   

15.
通过曼尼希反应一步法合成了二氧化硫脲(TDO)改性壳聚糖(CS)吸附剂(CS-TDO),对其进行了表征。以CS-TDO对Cu(Ⅱ)吸附性能为指标,探讨了合成优化条件。对比研究了CS和CS-TDO对焦磷酸铜电镀废水的处理效果。结果表明,CS-TDO已成功制备。合成CS-TDO的优化工艺为壳聚糖1.5 g,温度40℃,pH为5,转速1 000 r/min,m(CS):m(甲醛):m(TDO)=2.2:5:1。在此条件下,合成的CS-TDO对Cu(Ⅱ)(质量浓度100 mg/L)的去除率达到88.46%,吸附量为80.42 mg/g。当投加量为2.0 g/L时,CS-TDO对焦磷酸铜废水的去除率为98.23%,相比CS提高12.56百分点。研究结果可为壳聚糖衍生物的开发及其工业化应用提供参考。  相似文献   

16.
利用EDTC对氨羧络合剂电镀镉废水(200 mL,30 mg/L)进行沉淀处理。研究了EDTC投加量、絮凝剂Al_2(SO_4)_3·18H_2O的投加量、助凝剂PAM的投加量、反应时间、废水初始pH以及反应温度对处理效果的影响。实验结果表明,废水初始pH为7,EDTC投加量为0.425 g/L,在室温下快速搅拌反应8 min后加0.4 g/L絮凝剂Al_2(SO_4)_3·18H_2O,10 min后加0.015 g/L助凝剂PAM慢速搅拌反应5 min,静置沉淀后过滤分析,镉离子的去除率达到99.04%,残余镉离子的浓度为0.29 mg/L。  相似文献   

17.
以硅酸钠、硫酸铁、硫酸铝、硬脂酸钙为原料,制备了固体聚硅酸铁铝(PSAF)混凝剂,并以桂林市某污水处理厂二级生物处理后的出水为原水,研究了在最佳制备工艺条件下制备的固体PSAF混凝剂投加量和溶液pH对其混凝效果的影响。正交试验结果表明,制备固体PSAF混凝剂的优化工艺条件为:硅酸钠聚合的pH为2.5,溶液硅酸钠的浓度0.4 mol.L-1,Al3+与Fe3+的摩尔比5:5,加入铁铝混合液的温度为30℃,超声时间为40 min,硬脂酸钙的质量浓度为0.10g.L-1;混凝试验结果表明,当原水TP的质量浓度为1.23 mg.L-1、pH为7.5、固体PSAF的最佳投药量为125 mg.L-1时,TP的去除率为91.03%,COD去除率为70.3%,浊度去除率为60%。在pH为6.0~8.0时,固体PSAF除磷效果较好。  相似文献   

18.
采用表面接枝和表面印迹技术,以正硅酸乙酯改性后的Al2O3粉末为载体、壳聚糖为功能单体,制备了Cu2+印迹复合材料(IIP/Al2O3),用于选择性分离Cu2+. 研究了IIP/Al2O3对Cu2+的动态吸附,利用Thomas, Yoon-Nelson和Wolborska模型分析IIP/Al2O3吸附Cu2+过程,考察了动态条件下Cu2+的最佳洗脱条件. 结果表明,当Cu2+浓度100 mg/L、柱高37.25 mm、流速1.0 mL/min和pH=5时,IIP/Al2O3的穿透吸附容量和动态吸附容量分别为4.03和15.68 mg/g,Cu2+去除率为45.55%;Thomas和Yoon-Nelson模型能很好地拟合IIP/Al2O3对Cu2+的吸附;在柱高37.25 mm、洗脱液流速1.0 mL/min的条件下,15 mL 0.6 mol/L盐酸溶液对Cu2+的脱附率高达99.54%,脱附作用时间短,Cu2+易回收.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号