首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The effect of Y2O3 on the glass transition kinetics, crystallization kinetics, phase separation and crystallization behavior of 60ZnO–30B2O3–10SiO2 glass has been investigated by non-isothermal differential thermal analysis, scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The glass transition activation energies Eg calculated by using both Kissinger and Moynihan model decrease from 668?kJ/mol to 573?kJ/mol for Kissinger model, and 682?kJ/mol to 587?kJ/mol for Moynihan model with the increase of yttrium oxide doping content from 0 to 6?mol%. And the glass crystallization kinetics parameters, crystallization activation energy Ec and Avrami exponent n stands for crystal growth, are also obtained on the basis of several well developed equations. Increase of about 58?kJ/mol in Ec values obtained by different theoretical equations is caused by addition of 6?mol% yttrium oxide into 60ZnO–30B2O3–10SiO2 glass, and the Avrami exponent (n close to 2) suggests that crystal growth in 60ZnO–30B2O3–10SiO2 glass doped with or without yttrium is mainly one-dimensional growth of crystals. The results on the phase separation and crystallization behavior occurred at 893?K and 993?K respectively for base and doped glass, are well consistent with the glass transition and crystallization kinetics results. Hence, addition of yttrium oxide into 60ZnO–30B2O3–10SiO2 glass decrease the glass transition activation energy while increase the crystallization activation energy of glass, thereby the stability of glass structure is improved. Phase separation phenomenon and crystallization behavior occurred at glass surface provide some useful information for preparing glass ceramics with micro- or nano-crystals in surface.  相似文献   

2.
5MgO–9BaO–33B2O3–33Al2O3–20SiO2 (mol%) glass was prepared by the melt quenching method at 1823 K for 2 h. Dilatometry and differential scanning calorimetry (DSC) curves of the glass have been investigated. Fragility index F was used to estimate glass formability. The crystallization kinetics of the glass was described by the activation energy (E) for crystallization and numerical factors (n, m) depending on the nucleation process and growth morphology. XRD and SEM analysis were also used to describe the crystals’ types and morphology precipitated from the MgO–BaO–B2O3–Al2O3–SiO2 glass. The results show that the effective activation energy of the crystallization process E was 45.19 kJ/mol, and n up to 4.05. Two crystals phases, i.e. Al4B2O9 and Al20B4O36 were observed in the crystallized samples. SEM results were consistent with crystallization kinetics.  相似文献   

3.
The rigid nature of sealing glass-ceramics restricts the thermal cycling stability of Solid Oxide Fuel Cells (SOFCs), which thus evokes an interest in designing a sealing glass without crystallization under the operational condition of SOFCs. In this paper, we report that the sealing performance of 30Na2O-70SiO2 (in mole%) glass-ceramic can be significantly improved by Fe2O3 dopant through a composite approach. In particular, the crystallization in glass can be suppressed by appropriate Fe2O3 dopant amount (8?mol%), which results in the improved sealing property of glass. In addition, the glass modified with Fe2O3 shows good chemical compatibility with 8?mol% yttria-stabilized zirconia (8YSZ) electrolyte and metallic interconnect (430 stainless steel) in dual atmospheres. The possible mechanism for the improved sealing performance of 30Na2O-70SiO2 glass-ceramic by this unique composite approach is also discussed.  相似文献   

4.
The influence of BaO content (up to 15?mol%) on the crystallization behaviour, structure, thermal properties and microwave dielectric properties of the BaO-CaO-B2O3-SiO2 glasses and glass-ceramics system was investigated. The glasses were produced by melting at 1400?°C and quenching into water, and the glass-ceramics were produced via heat treatment at temperatures between 750 and 800?°C. The results of X-ray diffraction analysis showed that increasing the BaO content raised the resistance of the glass against crystallization and favoured the transformation of β-CaSiO3 and α-CaSiO3 phases, which crystallized in the Ba-free and in low BaO content compositions, into SiO2 and Ba4Si6O16, which crystallized in compositions with higher concentrations of BaO. The BaO content had little influence on the glass transition temperature (Tg) and the linear coefficient of thermal expansion (CTE), but strongly reduced the softening point (Ts). Even the addition of BaO as minor additives resulted in a dramatic reduction of the Ts; for example, the Ts decreased from 902?°C for the Ba-free composition to 682?°C for the BaO-containing one (5%). Low values of the dielectric constant (5.9?≤?εr ≤?6.63) and dielectric loss (1.12?×?10?3 ≤?tanδ?≤?3.15?×?10?3) were measured.  相似文献   

5.
Glass compositions in the system 40SiO2–30BaO–20ZnO–(x)Mn2O3–(10 − x)B2O3 glasses have been synthesized and the thermal, structural and crystallization kinetic properties characterized. The lower concentration of Mn2O3 in place of B2O3 acts as a network former and suppressed the tendency of phase separation in glasses. On the other hand, concentration of Mn2O3 > 7.5 mol% induce phase separation in the glass matrix. The highest activation energy for crystallization is observed in the composition without B2O3 (INM4) (355 kJ/mol). The values of thermal expansion coefficient (TEC) and viscosity of this glass is 8 × 10−6 K−1 and 104.2dPa s (850 °C), respectively. After long heat treatment (800 °C for 100 h), thermodynamically stable hexacelsian and monoclinic phases are formed. These phases are not detrimental to SOFC application.  相似文献   

6.
Influence of various intermediate oxides on thermal, structural and crystallization kinetics of 30BaO–40SiO2–20B2O3–10A2O3 (A = Y, La, Al, Cr) glasses has been studied. The highest glass transition temperature (Tg) with high thermal stability is observed in Y2O3 containing glasses as compared to other glasses. The thermal expansion coefficient (TEC) increases with increasing heat treatment duration in all the glasses. The maximum increase in TEC is observed in Cr2O3 containing glass ceramics. FTIR study showed that transmission bands due to silicate and borate chains become sharper with splitting after heat treatment. A selected glass sample (BaCr) has been tested for interaction and adhesion with Crofer 22 APU interconnect material for its application as a sealant in solid oxide fuel cell.  相似文献   

7.
We report Eu3+ doped transparent glass-ceramics (GCs) containing bismuth layer-structured ferroelectric (BLSF) CaBi2Ta2O9 (CBT) as the major crystal phase. The CBT crystal phase was generated in a silica rich glass matrix of SiO2-K2O-CaO-Bi2O3-Ta2O5 glass system synthesized by melt quenching technique followed by controlled crystallization through ceramming heat-treatment. Non-isothermal DSC study was conducted to analyze crystallization kinetics of the glass in order to understand the crystallization mechanism. The optimum heat-treatment protocol for ceramization of precursor glass that has been determined through crystallization kinetics analysis was employed to fabricate transparent GCs containing CBT nanocrystals, which was otherwise difficult. Structural analysis of the GCs was carried out using XRD, TEM, FESEM and Raman spectroscopy and results confirmed the existence of CBT nanocrystals. The transmittance and optical band gap energies of the GCs were found to be less when compared to the precursor glass. The refractive indices of the GCs were increased monotonically with increase in heat-treatment time, signaling densification of samples upon heat-treatment. The dielectric constants (εr) of the GCs were progressively increased with increase in heat-treatment duration indicating evolution of ferroelectric CBT crystals phase upon heat-treatment.  相似文献   

8.
M. K. Mahapatra  K. Lu 《Fuel Cells》2011,11(3):436-444
Glass is the most recognised material to seal solid oxide fuel/electrolyser cell components. We have developed a SrO‐La2O3‐Al2O3‐SiO2 (SABS‐0) based seal glass with all the desired thermophysical properties and thermochemical stability. In this study, the SABS‐0 seal glass is sandwiched between AISI 441 interconnect alloy and fully stabilised ZrO2 electrolyte for sealing ability evaluation. The sealing performance and the thermal cycling resistance of the tri‐layer assembly are tested by a pressure leakage test with 3–20 K min–1 heating rates for 2,500 h and 100 thermal cycles. The sealing strength is evaluated by a rupture strength test. The results show that the SABS‐0 glass is hermetic for at least 2,500 h and has high rupture strength for solid oxide fuel/electrolyser cell component sealing. The stress state for the tri‐layer assembly has been analysed using three different approaches.  相似文献   

9.
The nucleation and crystallization of MgO-B2O3-SiO2 (MBS) glass were studied by means of a non-isothermal, thermal analysis technique, X-ray diffraction and scanning electron microscopy. The temperature range of the nucleation and the temperature of the maximum nucleation rate for MBS glass were determined from the dependences of the inverse temperature at the DSC peak (1/Tp) and the maximum intensity of the exothermic DSC crystallization peak ((δT)p) on the nucleation temperature (Tn). For MBS glass the nucleation occurred at 600-750 °C, with the maximum nucleation rate at 700 °C, whereas the nucleation and crystal growth processes overlapped at 700 °C < T ≤ 750 °C. The analyses of the non-isothermal data for the bulk MBS glass using the most common models (Ozawa, Kissinger, modified Kissinger, Ozawa-Chen, etc.) revealed that the crystallization of Mg2B2O5 was three-dimensional bulk with a diffusion-controlled crystal growth rate, that n = m = 1.5 and that the activation energy for the crystallization was 410-440 kJ/mol.  相似文献   

10.
The gas tightness of glass sealing materials is a big challenge for the solid oxide fuel cell (SOFC) stacks operating at high temperature. Thermal, sintering, crystallization behavior and gas tightness properties of the glass-based with two different Al2O3 contents sealants are evaluated and discussed. The study showed that the sealants avoid cracks at the interface on NiO-YSZ (NiO-yttria stabilized zirconia) and SUS430 stainless steel interconnect substrates. The Al2O3 embedded in the glass matrix as a second phase, and promoted crystallization of K[AlSi3O8] at the early stage. This may because some ultrafine Al2O3 particles whose structure is destroyed by prolonged high temperature treatment according XRD and TEM analysis. Especially, the sealant containing 5 wt% Al2O3 undergoes a thermal cycle and maintains a stable leakage rate below 10?4 sccm?cm?1 for about 1000 h at 750 °C. The above results prove the possibility of using the Al2O3-doped sealing glass for SOFC stacks.  相似文献   

11.
Photostructurable Li2O-Al2O3-SiO2 glass is a promising material to fabricate complex three-dimensional structure with a high aspect ratio. However, its high dielectric loss at high frequencies has restrained its application in the field of integrated circuits packaging. In this research, La2O3, which has a large ionic radius, as well as strong polarization and bonding strength, was used to obstruct mobile ion migration to reduce the dielectric loss. The results indicated that moderate doping with La2O3 could effectively reduce the dielectric loss. When the dopant amount was 3%, the dielectric loss was successfully reduced to a minimum of 4?×?10?3 with a dielectric constant of 6.6 at 1?GHz, and this sample also possessed the optimal dielectric-temperature stability. Additionally, the effects of doping on the photosensitivity and crystallization behavior were also analysed. The results suggested that La2O3 doping did not affect the photosensitivity and selective crystallization characteristics. However, La2O3 restrained the precipitation of silicate from the [SiO4] tetrahedron, resulting in a decrease of nucleation rate and a delay of crystallization.  相似文献   

12.
Solid state glass electrolyte, xLi2O-(1 − x)(yB2O3-(1 − y)P2O5) glasses were prepared with wide range of composition, i.e. x = 0.35 - 0.5 and y = 0.17 - 0.67. This material system is one of the parent compositions for chemically and electrochemically stable solid-state electrolyte applicable to thin film battery. Lithium ion conductivity of Li2O-B2O3-P2O5 glasses was studied in the correlation to the structural variation of glass network by using FTIR and Raman spectroscopy. The measured ionic conductivity of the electrolyte at room temperature increased with x and y. The maximum conductivity of this glass system was 1.6 × 10−7 Ω−1 cm−1 for 0.45Li2O-0.275B2O3-0.275P2O5 at room temperature. It was shown that the addition of P2O5 reduces the tendency of devitrification and increases the maximum amount of Li2O added into glass former without devitrification. As Li2O and B2O3 contents increased, the conductivity of glass electrolyte increased due to the increase of three-coordinated [BO3] with a non-bridging oxygen (NBO).  相似文献   

13.
The densification and crystallization behaviors of MgO-B2O3-SiO2 (MBS) glass with various amounts of TiO2 additions (0-10 wt.%) were investigated by means of thermal analysis, X-ray powder diffraction and scanning electron microscopy. A microwave dielectric characterization was performed in order to evaluate the suitability of MBS glass-ceramics as a low-permittivity dielectric substrate. The densification of the MBS glass started below 700 °C. The main crystalline phases of Mg2B2O5 and MgSiO3 appeared at 800 and 950 °C, respectively. The Mg3TiB2O8 and TiB0.024O2 phases additionally crystallized in TiO2-added MBS glass-ceramics at 1000 °C. The permittivity increased from 6.1 in pure MBS glass to 6.9 in MBS glass with 10 wt.% of TiO2. The addition of TiO2 enhanced the crystallization and consequently increased the Qxf-values of the MBS glass (11 300 GHz) up to 16 500 GHz. The improvement of the Qxf-values became the most evident at 1050 °C. Dense MBS glass-ceramics sintered at 850 ≤ T ≤ 950 °C exhibited Qxf-values of 5000-8000 GHz (at ∼12 GHz), which are comparable with the values of CaO-B2O3-SiO2-based glass-ceramics.  相似文献   

14.
The alumina addition effects on the crystallization, sintering behaviors and dielectric properties of BaO–ZnO–SrO–CaO–Nd2O3–TiO2–B2O3–SiO2 (Ba–Zn–Sr–Ca–Nd–Ti–B–Si) glass powder were investigated using the differential thermal analyzer (DTA), thermo-mechanical analyzer (TMA), X-ray diffractometer (XRD). The results showed that the addition of alumina powder into Ba–Zn–Sr–Ca–Nd–Ti–B–Si glass changed the crystallization sequence from Nd2Ti4O11–Nd0.66TiO3 to Nd2Ti3O8.7–Nd2Ti2O7–Nd2Ti4O11and increased the densification activation energy due to the dissolution of Al3+ ions into the glass structure. Fully densified 30 vol.% alumina-added Ba–Zn–Sr–Ca–Nd–Ti–B–Si glass can be obtained via glass viscous flow before the second and third crystalline phases, Nd2Ti2O7 and Nd2Ti4O11crystallization. The 30 vol.% alumina-added Ba–Zn–Sr–Ca–Nd–Ti–B–Si glass–ceramics sintered at 900 °C exhibited a high dielectric constant of 17 and a quality factor of about 820, which provided a promising candidate for LTCC applications.  相似文献   

15.
Two oxides, Er2O3 and Nb2O3, are used to stabilize delta-phase Bi2O3 used as electrolyte of solid oxide fuel cell. Optimization of dopant ratio and total doping concentration (TDC) is determined by X-ray diffraction, and successfully reduce the TDC (Er + Nb) to 10-15 mol.%. Conductivities of different compositions are measured by two-probe method. The results show that highest conductivity appears at the minimum doping concentrations. Phase stability of ENSB samples with Er/Nb ratio of 2/1 and TDC of 10-20 mol.% at 650 °C up to 300 h is analyzed showing two newly formed (alpha- and gamma-) phases in the samples. Degradation of conductivity at 650 °C is studied in detail by DTA and TEM. The abnormity of lattice contraction of delta-phase is discussed.  相似文献   

16.
BaO-K2O-Nb2O5-SiO2 (BKNS) glass ceramics were prepared by microwave crystallization of transparent glass matrices and the effects of microwave treatment temperature on their dielectric performances, phase structure, microstructure and breakdown strength (BDS) were investigated systematically. X-ray diffraction results suggested that microwave treatment had no significant influence on the type of precipitated phases. The microstructure of the glass ceramics was remarkably optimized via microwave treatment. The dielectric constant and breakdown strength of microwave-treated samples were significantly improved as compared with conventional-heated samples at the same temperature. The maximum theoretical energy storage density of microwave-treatment samples at 750?°C reached 12.7?J/cm3, which was larger than that of the conventional-heated samples (8.6?J/cm3).  相似文献   

17.
The influences of Li2O-B2O3-SiO2 glass (LBS) on the activation energy, phase composition, the stability of the structure and microwave dielectric properties of Zn0.15Nb0.3Ti0.55O2 ceramics have been systematically investigated. LBS glass acted as flux former and contributed to the reactive liquid-phase sintering mechanism, which remarkably lowed the sintering temperature from 1150?°C to 900?°C and enhanced the shrinkage and densification of ceramic at the low sintering temperatures. The ceramics with 1.5?wt% LBS glass sintered at 900?°C for 3?h show great properties: εr = 73.59, Q × f = 8024?GHz, τf = 270.54?ppm/°C.  相似文献   

18.
The influence of Al2O3 (8 wt.%) on sintering and crystallization features of glass powders based on magnesium silicate (MgSiO3) was experimentally determined. The investigated compositions were Y0.125Mg0.875Si0.875B0.125O3 and Y0.125Mg0.725Ba0.15Si0.875B0.125O3. For the experiments, glasses in bulk and frit forms were produced by melting in Pt-crucible at 1600 °C for 1.5 h. Glass-powder compacts were sintered at different temperatures between 900 °C and 1100 °C. The evolution of crystalline regime was determined by in situ recording of X-ray diffractograms of fine glass powders at elevated temperatures. The results and their discussion showed that addition of 8 wt.% Al2O3 in glass batches affected the thermal properties of the glasses and resulted in MgSiO3-based glass ceramics well sintered between 900 °C and 1100 °C. In the BaO-free MgSiO3 glass ceramics, clino- and orthoenstatite crystallize while the presence of BaO favours the formation of hexacelsian.  相似文献   

19.
The pressure dependence of the refractive index for a natural glass of composition 0.528SiO2 · 0.019TiO2 · 0.102Al2O3 · 0.021Fe2O3 · 0.062FeO · 0.002MnO · 0.081CaO · 0.072MgO · 0.068Na2O · 0.034K2O · 0.011P2O5 at pressures up to 5.0 GPa is determined using a polarizing interference microscope and an apparatus with diamond anvils. The densities and compressibilities of the glass are calculated from the measured refractive indices within the theory of photoelasticity. The results are compared with the data obtained earlier for another glass that has a similar composition but contains a lower concentration of alkali metal oxides. A higher compressibility of the glass under investigation as compared to the compressibility of the glass studied previously is in agreement with the degrees of polymerization that are calculated taking into account the formation of triclusters.Original Russian Text Copyright © 2004 by Fizika i Khimiya Stekla, Kuryaeva.  相似文献   

20.
In the CaO-SiO2-Al2O3-Fe2O3 pseudoquaternary system, the solid solutions of Ca2(AlxFe1−x)2O5, with x<0.7 (ferrite), Ca2SiO4 (belite), Ca3Al2O6 (C3A) and Ca12Al14O33 (C12A7), were crystallized out of a complete melt during cooling at 8.3 °C/min. Upon cooling to 1370 °C, both the crystals of ferrite with x=0.41 and belite would start to nucleate from the melt. During further cooling, the x value of the precipitating ferrite would progressively increase and eventually approach 0.7. At ambient temperature, the ferrite crystals had a zonal structure, the x value of which successively increased from the cores toward the rims. The value of 0.45 was confirmed for the cores by EPMA. The chemical formula of the rims was determined to be Ca2.03[Al1.27Fe0.68Si0.02]Σ1.97O5 (x=0.65). As the crystallization of ferrite and belite proceeded, the coexisting melt would become progressively enriched in the aluminate components. After the termination of the ferrite crystallization, the C3A and belite would immediately crystallize out of the melt, followed by the nucleation of C12A7. The C12A7 accommodated about 2.1 mass% Fe2O3 in the chemical formula Ca12.03[Al13.61Fe0.37]Σ13.98O33, being free from the other foreign oxides (SiO2 and P2O5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号