首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the monomer ratio, surfactant, and crosslinker contents on the particle size and phase‐transition behavior of the copolymer poly(N‐isopropylacrylamide‐co‐methacrylic acid) (PNIPAAm–MAA) were investigated with Fourier transform infrared, differential scanning calorimetry, and dynamic laser scattering techniques. In addition to the thermoresponsive property of poly(N‐isopropylacrylamide), ionized methacrylic acid groups brought pH sensitivity to the PNIPAAm–MAA copolymer particles. The polymer particle size varied with the amounts of the monomer ratio, surfactant, and crosslinker. As the monomer ratio and crosslinker content increased and the amount of the surfactants decreased, the particle size increased. The influence of the crosslinker content on the particle size was less significant than the effect of the monomer ratio and surfactants. When the temperature increased, the particles tended to shrink and decreased in size to near or below 100 nm. Particle sizes at 20°C decreased to less than 100 nm with increased surfactant content. The control of the particle size within the 100‐nm range makes PNIPAAm–MAA copolymer particles useful for biomedical and heavy‐metal‐ion adsorption applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
In the present study, PS@α‐Fe2O3 nanocomposites were prepared by chemical microemulsion polymerization approach and the ability of magnetic beads to remove Cu(II) ions from aqueous solutions in a batch media was investigated. Various physico‐chemical parameters such as pH, initial metal ion concentration, temperature, and equilibrium contact time were also studied. Adsorption mechanism of Cu2+ ions onto magnetic polymeric adsorbents has been investigated using Langmuir, Freundlich, Sips and Redlich–Petersen isotherms. The results demonstrated that the PS@α‐Fe2O3 nanocomposite is an effective adsorbent for Cu2+ ions removal. The Sips adsorption isotherm model (R2 > 0.99) was more in consistence with the adsorption isotherm data of Cu(II) ions compared to other models and the maximum adsorbed amount of copper was 34.25 mg/g. The adsorption kinetics well fitted to a pseudo second‐order kinetic model. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were calculated from the temperature dependent sorption isotherms, and the results suggested that copper adsorption was a spontaneous and exothermic process. POLYM. ENG. SCI., 55:2735–2742, 2015. © 2015 Society of Plastics Engineers  相似文献   

3.
The adsorption of metal ions (Mo6+, Cu2+, Fe2+, and Fe3+) was examined on chemically modified chitosans with a higher fatty acid glycidyl (CGCs), and the adsorption of Cu2+ was examined on ethylenediamine tetraacetic acid dianhydride modified CGCs (EDTA‐CGCs) synthesized by the reaction of the CGCs with ethylenediamine tetraacetic acid dianhydride. The adsorption of phosphate ions onto the resulting substrate/metal‐ion complex was measured. Mo6+ depicted remarkable adsorption toward the CGCs, although all the Mo6+ was desorbed under the adsorption conditions of the phosphate ions. The other metal ions were adsorbed to some extent on CGCs by chelating to the amino group in the substrate, except for CGC‐1, which had the highest degree of substitution (83.9%). Considerable amounts of Fe2+ were adsorbed onto CGCs; however, only a limited number of phosphate ions was adsorbed onto the substrate/metal‐ion complex. As a result, the following adsorbent/metal‐ion complexes gave higher adsorption ability toward phosphate ions: CGC‐4/Cu2+, CGC‐4/Fe3+, and EDTA‐CGC‐3/Fe3+. Where, CGC‐3 is a chemically modified chitosan with the degree of substitution of 26.5 percentage, and CGC‐4 is one with the degree of substitution of 16.0 percentage. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
In this work, an ion‐imprinted polymeric material based on functionalized phenolic resin was developed for the efficient selective removal of Cu2+ ions from aqueous solution. p‐Aminophenol‐isatin Schiff base ligand (HPIS) was first synthesized and combined with Cu2+ ions to prepare the corresponding complex [Cu(PIS)2]. The Schiff base ligand along with its copper complex was fully investigated and characterized before anchoring in a base‐catalyzed condensation copolymerization with formaldehyde and resorcinol. The Cu2+ ions were removed from the obtained resin construction and the resulting Cu2+ ion‐imprinted material (Cu‐PIS) was employed for the selective extraction of Cu2+ ions under different pH values, initial concentrations and contact time conditions. The optimum pH for the removal process was chosen as 6 and the maximum adsorption capacity was 187 ± 1 mg g–1. Also, the kinetics showed a better fit with the pseudo‐second‐order equations. The selectivity of the prepared Cu‐PIS was also evaluated in a multi‐ionic species containing Ni2+, Cd2+, Pb2+, Co2+ besides Cu2+ ions and the determined parameters confirmed a superior recognition capability toward the imprinted Cu2+ ions. © 2019 Society of Chemical Industry  相似文献   

5.
The chelating membranes for adsorption of metal ions were prepared by the photografting of glycidyl methacrylate (GMA) onto a polyethylene (PE) film and the subsequent modification of the resultant GMA‐grafted PE (PE‐g‐PGMA) films with disodium iminodiacetate in an aqueous solution of 55% DMSO at 80°C. The adsorption and desorption properties of the iminodiacetate (IDA) group‐appended PE‐g‐PGMA (IDA‐(PE‐g‐PGMA)) films to Cu2+ ions were investigated as functions of the grafted amount, pH value, Cu2+ ion concentration, and temperature. The amount of adsorbed Cu2+ ions increased with an increase in the pH value in the range of 1.0–5.0. The time required to reach the equilibrium adsorption decreased with an increase in the temperature, although the degree of adsorption stayed almost constant. The amount of Cu2+ ions desorbed from the (IDA‐(PE‐g‐PGMA)) films increased and the time required to reach the equilibrium desorption decreased with an increase in the HCl concentration. About 100% of Cu2+ ions were desorbed in the aqueous HCl solutions of more than 0.5M. The amounts of adsorbed and desorbed Cu2+ ions were almost the same in each cyclic process of adsorption in a CuCl2 buffer at pH 5.0 and desorption in an aqueous 1.0M HCl solution. These results indicate that the IDA‐(PE‐g‐PGMA) films can be applied to a repeatedly generative chelating membrane for adsorption and desorption of metal ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99:1895–1902, 2006  相似文献   

6.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   

7.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
We modified microporous polyamide hollow fibers by acid hydrolysis to amplify the reactive groups and subsequent binding of Cibacron Blue F3GA. Then, we loaded the Cibacron Blue F3GA‐attached hollow fibers with different metal ions (Cu2+, Ni2+, and Co2+) to form the metal chelates. We characterized the hollow fibers by scanning electron microscopy. The effect of pH and initial concentration of human serum albumin (HSA) on the adsorption of HSA to the metal‐chelated hollow fibers were examined in a batch system. Dye‐ and metal‐chelated hollow fibers had a higher HSA adsorption capacity and showed less nonspecific protein adsorption. The nonspecific adsorption of HSA onto the polyamide hollow fibers was 6.0 mg/g. Cibacron Blue F3GA immobilization onto the hollow fibers increased HSA adsorption up to 147 mg/g. Metal‐chelated hollow fibers showed further increases in the adsorption capacity. The maximum adsorption capacities of Co2+‐, Cu2+‐, and Ni2+‐chelated hollow fibers were 195, 226, and 289 mg/g, respectively. The recognition range of metal ions for HSA from human serum followed the order: Ni(II) > Cu(II) > Co(II). A higher HSA adsorption was observed from human serum (324 mg/g). A significant amount of the adsorbed HSA (up to 99%) was eluted for 1 h in the elution medium containing 1.0M sodium thiocyanide (NaSCN) at pH 8.0 and 25 mM ethylenediaminetetraacetic acid at pH 4.9. Repeated adsorption–desorption processes showed that these metal‐chelated polyamide hollow fibers were suitable for HSA adsorption. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3346–3354, 2002  相似文献   

9.
The sorption properties of the commercially available cationic exchange resin, Amberlite IRC‐718, that has the iminodiacetic acid functionality, toward the divalent metal‐ions, Fe2+, Cu2+, Zn2+, and Ni2+ were investigated by a batch equilibration technique at 25°C as a function of contact time, metal ion concentration, mass of resin used, and pH. Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Fe2+ and that the metal‐ion uptake follows the order: Fe2+ > Cu2+> Zn2+ >Ni2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
BACKGROUND: In this study, poly[(N‐vinylimidazole)‐co‐(maleic acid)] (poly(VIm/MA)) hydrogels were prepared by γ‐irradiation of ternary mixtures of N‐vinylimidazole–maleic acid–water using a 60Co γ‐source. Spectroscopic and thermal analyses of these hydrogels as a function of protonation showed that the results are consistent with the existence of an H‐bridged complex when the imidazole rings are partially protonated. Finally, the efficiency and binding trends of Cu2+, Co2+, Cd2+ and Pb2+ ions with both protonated and unprotonated poly(VIm/MA) hydrogels were determined. RESULTS: Gelation of 90% was reached at around 180 kGy dose at the end of irradiation. The poly(VIm/MA) hydrogels synthesized were further protonated in HCl solutions with different concentrations. Hydrogels originally showed 450% volumetric swelling; this ratio reached 1900% after protonation at pH = 5.0. Fourier transform infrared spectral changes in the +N? H stretching region (3200–3600 and 1173 cm?1) and the ring mode deformation at 915 cm?1 are consistent with the formation of an H‐bridged complex between the protonated and unprotonated imidazole rings upon partial protonation. Similar changes were obtained from NMR spectra of both the protonated and unprotonated forms of the hydrogels. CONCLUSION: Protonated and unprotonated hydrogels have been used in heavy metal ion adsorption studies for environmental purposes. Adsorption decreased with decreasing pH value due to the protonation of the VIm ring. The adsorption of Me2+ ions decreased in the order Cu2+ > Co2+ > Cd2+ > Pb2+, which is related to the complexation stability as well as the ionic radius of the metal ions. These results show that P(VIm/MA) hydrogels can be used efficiently to remove heavy metal ions from aqueous solutions. However, the protonated form is a bad choice for heavy metal ion adsorption due to electrostatic repulsion forces; it can nevertheless be assumed to be a good choice for anion adsorption from environmental waste water systems. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
Aminoalkyl celluloses (AmACs) were prepared from 6-chlorodeoxycellulose and aliphatic diamines H2N(CH2)mNH2 (m = 2, 4, 6, 8). Their adsorption and desorption of divalent heavy metal ions such as Cu2+, Mn2+, Co2+, Ni2+ and their mixtures were also investigated in detail. Adsorption of metal ions on AmACs was remarkably affected by the pH of the solution, the metal ion and its initial concentration, and also the number of methylene units in the diamines. No adsorption of metal ions occurred on AmACs in strongly acidic solutions. However, metal ions were adsorbed rapidly on AmACs from weakly acidic solutions and the amount of adsorption increased with increasing pH. The effectiveness of AmACs as adsorbents decreased with increasing length of the methylene moiety, and AmACs from ethylenediamine (m = 2) was most effective. The adsorption of metal ions on AmACs was in the order Cu2+ > Ni2+ > Co2+ > Mn2+. Accordingly, their behavior followed the Irving-Williams series and Cu2+ ions were preferentially adsorbed from solutions containing metal ion mixtures. The adsorbed ions were easily desorbed from the AmACs by stirring in 0.1 M HCl.  相似文献   

12.
A novel polymeric ligand having 2,2′:6′,2″‐terpyridine as pendant group was prepared through a Williamson type etherification approach for the reaction between 4′‐hydroxy‐2,2′: 6′,2″‐terpyridine and the commercially available 4‐chloromethyl polystyrene. The chelating properties of the new polymer toward the divalent metal ions (Cu2+, Zn2+, Ni2+, and Pb2+) in aqueous solutions was studied by a batch equilibration technique as a function of contact time, pH, mass of resin, and concentration of metal ions. The amount of metal‐ion uptake of the polymer was determined by using atomic absorption spectrometry. Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Pb2+ and that the metal‐ion uptake follows the order: Pb2+ > Cu2+ > Zn2+ > Ni2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Cellulose derivative (MPCN) modified by 1,5‐diaminoethyl‐3‐hydroxy‐1,5‐diazacycloheptane (DADN) was prepared and characterized by scanning electron microscopy and elemental, and infrared analysis. MPCN and its Cu2+, Pb2+ complexes were characterized by thermogravimetric and differential thermal analysis. The coordination adsorption behavior of MPCN with divalent copper and lead ions was determined. The effects of temperature, initial pH value, and the concentration of MPCN ligand to the equilibrium adsorption were discussed. The optimum pH range of the coordination adsorption of MPCN with Cu2+ and Pb2+ is 5–6. The rate constants of the coordination reaction were found. At 323 K, the rate constant is 1.0 × 10−3 and 7.0 × 10−4 s−1 for Cu2+ and Pb2+, respectively. The thermodynamic parameters of the coordination reaction were obtained based on the experiment data of the adsorption isotherms. The coordination reaction was performed spontaneously from the data of ΔG, as follows: −21.65 and −19.41 kJ/mol and ΔS, 87.06 and 67.92 J/mol K for Cu2+ and Pb2+, respectively. The coordination ratio of DADN coordination group immobilized on cellulose beads with either metal ion is about 1 : 2 from the plot of the relation of lgD versus lgL and the capacity of saturation adsorption. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1278–1285, 1999  相似文献   

14.
A poly(vinyl alcohol) membrane (PVA) was modified by radiation graft copolymerization of acrylic acid/styrene (AAc/Sty) comonomers. The Cu and Fe ion‐transport properties of these membranes were investigated using a diaphragm dialysis cell. In the feed solution containing CuCl2 or a mixture of CuCl2 and FeCl3, the PVA‐g‐P(AAc/Sty) membranes showed high degrees of permselectivity toward Cu2+ rather than toward Fe3+. The permeation of Cu2+ ions through the membranes was found to increase with decrease in the grafting yield. However, as the content of Cu2+ ions in the Cu/Fe binary mixture feed solutions decreased, the rate and the amount of transported Cu2+ through the grafted membrane decreased, with no appreciable permselectivity toward Fe3+. When Fe2+ ions were used instead of Fe3+ ions in the feed solution containing Cu2+, the transport of both Cu2+ and Fe2+ through the membrane was observed. The rate of transport of Fe2+ was higher than that of Cu2+. In addition, it was found that the selective transport of ions was significantly influenced by the pH difference between both sides of the membranes. As the pH of the feed or the received solution decreased, both Cu2+ and Fe3+ passed through the membrane and were transported to the received solution. The role of carboxylic acid and the hydroxyl groups of the grafted membranes in the transportation process of ions is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 125–132, 2000  相似文献   

15.
In this article we report a new chelating fiber that was prepared from a hydrolyzate of poly(N‐vinylformamide/acrylonitrile) by a wet‐spinning method. This fiber contains chelating groups, such as amidine groups, amino groups, cyano groups, and amide groups, with high densities. We examined the chelating abilities for several metal ions with this fiber, and present the morphological merit of the fibrous product compared with the globular resin. Based on the research results, it is shown that the fiber has higher binding capacities and better adsorption properties for heavy metal ions than the resin. The pH value of the metal ion solution shows strong influences on the adsorption of the metal ions. The maximum adsorption capacities of the fiber for Cu2+, Cr3+, Co2+, Ni2+, and Mn2+ are 112.23, 88.11, 141.04, 108.06, and 73.51 mg/g, respectively. In mixed metal ions solution, the fiber adsorbs Cr3+, Cu2+ and Co2+ efficiently. The adsorbed metal ions can be quantitatively eluted by hydrochloric acid. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1378–1386, 2002  相似文献   

16.
Heavy metal ions such as Cu2+ and Pb2+ impose a significant risk to the environment and human health due to their high toxicity and non‐degradable characteristics. Herein, Al(OH)3‐polyacrylamide chemically modified with dithiocarbamates (Al‐PAM‐DTCs) was synthesized using formaldehyde, diethylenetriamine, carbon disulfide, and sodium hydroxide for rapid and efficient removal of Cu2+ and Pb2+. The synthesized adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis, scanning electron microscopy–energy dispersive X‐ray spectroscopy analysis, and transmission electron microscope measurements. Al‐PAM‐DTCs showed rapid removal of Cu2+ (<30 min) and Pb2+ (<15 min) with high adsorption capacities of 416.959 mg/g and 892.505 mg/g for Cu2+ and Pb2+ respectively. Al‐PAM‐DTCs also had high capacities in removing suspended solids and metal ions simultaneously in turbid bauxite suspensions. FTIR, thermodynamic study, and elemental mapping were used to determine the adsorption mechanism. The rapid, convenient, and effective adsorption of Cu2+ and Pb2+ indicated that Al‐PAM‐DTCs has great potential for practical applications in purification of other heavy metal ions from aquatic systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45431.  相似文献   

17.
Particulate and fibrous adsorbents with enriched amidoxime groups were synthesized by using a novel monomer N,N′‐dipropionitrile acrylamide. The adsorption properties of amidoximated poly(N,N′‐dipropionitrile acrylamide) [poly(DPAAm)] particles and a nonwoven fabric grafted with the same for UO22+, Pb2+, Cu2+, and Co2+ at high concentrations were investigated by batch process. Metal ion adsorption studies were conducted from metal ion solutions with different initial concentrations (100–1500 ppm). It was shown that particulated amidoximated poly(DPAAm) has higher adsorption capacity than amidoximated nonwoven fabrics for all metal ions, especially for uranyl ions. The results of the adsorption studies showed that the interaction between UO22+ and amidoximated groups agree with the Langmuir‐type isotherm. From the Langmuir equation, the adsorption capacities were found as 400 mg UO22+/g dry amidoximated poly(DPAAm) and 250 mg UO22+/g dry amidoximated graft polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1705–1710, 2004  相似文献   

18.
Novel polyaspartamide copolymers containing histamine pendants (PHEA‐HIS) were prepared from polysuccinimide, which is the thermal polycondensation product of aspartic acid, via a successive ring‐opening reaction using histamine (HIS) and ethanolamine (EA). The prepared water‐soluble copolymer was then crosslinked by reacting it with hexamethylene diisocyanate in order to provide a hydrogel with both good gel strength and reversible CO2 absorption characteristics. PHEA‐HIS gel is also pH‐sensitive and eligible to coordinate to metal ions such as Pb2+, Cu2+, and Ni2+ due to the imidazole units in its structure. The CO2‐responsive swelling behavior, metal‐ion adsorption, and morphology of the crosslinked gels were investigated. The approach described here results is a promising hydrogel with potential for a variety of industrial and biomedical applications including CO2 capture, CO2‐responsive and switchable sensors, and smart drug delivery systems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43305.  相似文献   

19.
An effective method was developed to isolate toxic heavy metal ions from the aqueous solution by the magnetic nanopolymers. The magnetic sorbent was prepared with radiation‐induced crosslinking polymerization of chitosan (CS), 2‐acrylamido‐glycolic acid (AMGA), and acrylic acid (AAc), which stabilized by magnetite (Fe3O4) as nanoparticles. The formation of magnetic nanoparticles (MNPs) into the hydrogel networks was confirmed by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and Scanning electron microscopy, which revealed the formation of MNPs throughout the hydrogel networks. The swelling behavior of the hydrogels and magnetic ones was evaluated at different pH values. The adsorption activity for heavy metals such as Cu2+ and Co2+ by nonmagnetic and magnetic hydrogels, Fe3O4/CS/(AMGA‐co‐AAc), in terms of adsorption amount was studied. It was revealed that hydrogel networks with magnetic properties can effectively be used in the removal of heavy metal ions pollutants and provide advantageous over conventional ones. POLYM. ENG. SCI., 55:1441–1449, 2015. © 2015 Society of Plastics Engineers  相似文献   

20.
Pecan shell chars were activated using steam, carbon dioxide (CO2), or phosphoric acid (H3PO4) to produce granular activated carbons (GACs). The GACs were characterized for select physical, chemical and adsorption properties. Air oxidation of the GACs was used to increase copper ion (Cu2+) adsorption. BET surface areas of pecan carbons were equal to or greater than commercial GACs. Carbon dioxide activation favored microporosity, while the other activations increased both mesoporosity and microporosity. Bulk densities and particle attrition of the pecan shell GACs were generally similar to the commercial carbons. Air oxidation of steam‐and CO2‐activated GACs increased copper ion adsorption, although not to the same extent as GACs made by H3PO4 activation. Copper ion adsorption and the amount of titratable functional groups greatly exceeded the values for the commercial GACs. Steam‐and CO2‐activated pecan shell carbons were similar to but in some cases exceeded the ability of commercial GACs to remove certain organic compounds from water. GACs from pecan shells showed considerable commercial potential to remove metal ions and organic contaminants from water. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号